These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11774333)

  • 41. Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid.
    Wang XX; Yan W; Hayakawa S; Tsuru K; Osaka A
    Biomaterials; 2003 Nov; 24(25):4631-7. PubMed ID: 12951006
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid.
    Takeuchi A; Ohtsuki C; Miyazaki T; Tanaka H; Yamazaki M; Tanihara M
    J Biomed Mater Res A; 2003 May; 65(2):283-9. PubMed ID: 12734823
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2003 Apr; 24(9):1603-11. PubMed ID: 12559820
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bonelike apatite formation utilizing carbon nanotubes as template.
    Niu L; Kua H; Chua DH
    Langmuir; 2010 Mar; 26(6):4069-73. PubMed ID: 20020722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications.
    Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C
    Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid.
    Khalili V; Khalil-Allafi J; Frenzel J; Eggeler G
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():473-482. PubMed ID: 27987734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coating bone-like apatite onto organic substrates using solutions mimicking body fluid.
    Ohtsuki C; Kamitakahara M; Miyazaki T
    J Tissue Eng Regen Med; 2007; 1(1):33-8. PubMed ID: 18038390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica.
    Li P; Nakanishi K; Kokubo T; de Groot K
    Biomaterials; 1993 Oct; 14(13):963-8. PubMed ID: 8286673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation and growth of clusters in conventional and new kinds of simulated body fluids.
    Oyane A; Onuma K; Ito A; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Feb; 64(2):339-48. PubMed ID: 12522821
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of phosphorous ion implantation on the mechanical properties and bioactivity of hydroxyapatite.
    Kobayashi S; Muramatsu T; Teranishi Y
    J Mater Sci Mater Med; 2015 Jan; 26(1):5351. PubMed ID: 25578705
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Apatite formation on bioactive zirconium metal prepared by chemical treatment.
    Shi X; Hulbert S
    Biomed Sci Instrum; 2002; 38():489-93. PubMed ID: 12085656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface characterization and biological properties of regular dentin, demineralized dentin, and deproteinized dentin.
    Tabatabaei FS; Tatari S; Samadi R; Torshabi M
    J Mater Sci Mater Med; 2016 Nov; 27(11):164. PubMed ID: 27655430
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid.
    Liu X; Ding C; Wang Z
    Biomaterials; 2001 Jul; 22(14):2007-12. PubMed ID: 11426878
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid.
    Nge TT; Sugiyama J
    J Biomed Mater Res A; 2007 Apr; 81(1):124-34. PubMed ID: 17111406
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reactivity of plasma-sprayed wollastonite coating in simulated body fluid.
    Liu X; Ding C
    J Biomed Mater Res; 2002 Feb; 59(2):259-64. PubMed ID: 11745561
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative assessment of apatite formation via a biomimetic method using quartz crystal microbalance.
    Tanahashi M; Kokubo T; Matsuda T
    J Biomed Mater Res; 1996 Jun; 31(2):243-9. PubMed ID: 8731213
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioactivity in in situ hydroxyapatite-polycaprolactone composites.
    Verma D; Katti K; Katti D
    J Biomed Mater Res A; 2006 Sep; 78(4):772-80. PubMed ID: 16739180
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bonding strength of bonelike apatite layer to Ti metal substrate.
    Kim HM; Miyaji F; Kokubo T; Nakamura T
    J Biomed Mater Res; 1997; 38(2):121-7. PubMed ID: 9178739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of pH on the structural evolution of accelerated biomimetic apatite.
    Chou YF; Chiou WA; Xu Y; Dunn JC; Wu BM
    Biomaterials; 2004 Oct; 25(22):5323-31. PubMed ID: 15110483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In-vitro study of the spontaneous calcification of PHEMA-based hydrogels in simulated body fluid.
    Zainuddin ; Hill DJ; Whittaker AK; Chirila TV
    J Mater Sci Mater Med; 2006 Dec; 17(12):1245-54. PubMed ID: 17143755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.