These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1177496)

  • 1. Theory of the cooperative transition between two ordered conformations of poly(L-proline). II. Molecular theory in the absence of solvent.
    Tanaka S; Scheraga HA
    Macromolecules; 1975; 8(4):504-16. PubMed ID: 1177496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of the cooperative transition between two ordered conformations of poly(L-proline). III. Molecular theory in the presence of solvent.
    Tanaka S; Scheraga HA
    Macromolecules; 1975; 8(4):516-21. PubMed ID: 1177497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of the cooperative transition between two ordered conformations of poly(L-proline). I. Phenomenological theory.
    Tanaka S; Scheraga HA
    Macromolecules; 1975; 8(4):494-503. PubMed ID: 1177495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational preferences of proline oligopeptides.
    Kang YK; Jhon JS; Park HS
    J Phys Chem B; 2006 Sep; 110(35):17645-55. PubMed ID: 16942110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum mechanical study of the conformational behavior of proline and 4R-hydroxyproline dipeptide analogues in vacuum and in aqueous solution.
    Benzi C; Improta R; Scalmani G; Barone V
    J Comput Chem; 2002 Feb; 23(3):341-50. PubMed ID: 11908497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Puckering transition of proline residue in water.
    Kang YK
    J Phys Chem B; 2007 Sep; 111(35):10550-6. PubMed ID: 17696525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cis-trans isomerization and puckering of proline residue.
    Kang YK; Choi HY
    Biophys Chem; 2004 Oct; 111(2):135-42. PubMed ID: 15381311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferred proline puckerings in cis and trans peptide groups: implications for collagen stability.
    Vitagliano L; Berisio R; Mastrangelo A; Mazzarella L; Zagari A
    Protein Sci; 2001 Dec; 10(12):2627-32. PubMed ID: 11714932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Puckering transition of 4-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2005 Sep; 109(35):16982-7. PubMed ID: 16853162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the role of stereoelectronic effects in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution.
    Improta R; Benzi C; Barone V
    J Am Chem Soc; 2001 Dec; 123(50):12568-77. PubMed ID: 11741421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrrolidine ring puckering in cis and trans-proline residues in proteins and polypeptides. Different puckers are favoured in certain situations.
    Milner-White EJ; Bell LH; Maccallum PH
    J Mol Biol; 1992 Dec; 228(3):725-34. PubMed ID: 1469711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1H- and 13C-NMR investigations on cis-trans isomerization of proline peptide bonds and conformation of aromatic side chains in H-Trp-(Pro)n-Tyr-OH peptides.
    Poznański J; Ejchart A; Wierzchowski KL; Ciurak M
    Biopolymers; 1993 May; 33(5):781-95. PubMed ID: 8393714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum mechanical and NMR studies of ring puckering and cis/trans-rotameric interconversion in prolines and hydroxyprolines.
    Aliev AE; Bhandal S; Courtier-Murias D
    J Phys Chem A; 2009 Oct; 113(40):10858-65. PubMed ID: 19757781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational behavior of beta-proline oligomers.
    Sandvoss LM; Carlson HA
    J Am Chem Soc; 2003 Dec; 125(51):15855-62. PubMed ID: 14677977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease.
    Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL
    Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locked conformations for proline pyrrolidine ring: synthesis and conformational analysis of cis- and trans-4-tert-butylprolines.
    Koskinen AM; Helaja J; Kumpulainen ET; Koivisto J; Mansikkamäki H; Rissanen K
    J Org Chem; 2005 Aug; 70(16):6447-53. PubMed ID: 16050708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating proline puckering states in diproline segments in proteins.
    Saha I; Shamala N
    Biopolymers; 2013 Sep; 99(9):605-10. PubMed ID: 23444278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.