These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 117751)

  • 21. Kinetics of BTEX biodegradation by a coculture of Pseudomonas putida and Pseudomonas fluorescens under hypoxic conditions.
    Shim H; Hwang B; Lee SS; Kong SH
    Biodegradation; 2005 Aug; 16(4):319-27. PubMed ID: 15865337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CO2-fixing enzymes in Pseudomonas fluorescens.
    Higa AI; Milrad de Forchetti SR; Cazzulo JJ
    J Gen Microbiol; 1976 Mar; 93(1):69-74. PubMed ID: 816991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of hydrogen cyanide by Pseudomonas fluorescens.
    Freeman LR; Angelini P; Silverman GJ; Merritt C
    Appl Microbiol; 1975 Apr; 29(4):560-1. PubMed ID: 164822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of carbon dioxide on bacterial growth parameters in milk as measured by conductivity.
    Martin JD; Werner BG; Hotchkiss JH
    J Dairy Sci; 2003 Jun; 86(6):1932-40. PubMed ID: 12836927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values.
    Gonçalves LDDA; Piccoli RH; Peres AP; Saúde AV
    Braz J Microbiol; 2017; 48(2):352-358. PubMed ID: 28110805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury absorption by Pseudomonas fluorescens BM07 grown at two different temperatures.
    Noghabi KA; Zahiri HS; Lotfi AS; Raheb J; Nasri S; Yoon SC
    Pol J Microbiol; 2007; 56(2):111-7. PubMed ID: 17650681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO₂.
    Nie M; Bell C; Wallenstein MD; Pendall E
    Sci Rep; 2015 Mar; 5():9212. PubMed ID: 25784647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of elevated oxygen and carbon dioxide on the surface growth of vegetable-associated micro-organisms.
    Amanatidou A; Smid EJ; Gorris LG
    J Appl Microbiol; 1999 Mar; 86(3):429-38. PubMed ID: 10196748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of growth temperature on the accumulation of glucose-oxidation products in Pseudomonas fluorescens.
    Lynch WH; MacLeod J; Franklin M
    Can J Microbiol; 1975 Oct; 21(10):1553-9. PubMed ID: 811341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth of an extracellular proteinase-deficient strain of Pseudomonas fluorescens on milk and milk proteins.
    Torrie JP; Cholette H; Froehlich DA; McKellar RC
    J Dairy Res; 1983 Aug; 50(3):365-74. PubMed ID: 6413562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of Krogh's diffusion constant of CO2 in respiring muscle at various CO2 levels: evidence for facilitated diffusion.
    Kawashiro T; Scheid P
    Pflugers Arch; 1976 Mar; 362(2):127-33. PubMed ID: 944419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of a predictive model coupling gas transfer and microbial growth in fresh food packed under modified atmosphere.
    Guillard V; Couvert O; Stahl V; Hanin A; Denis C; Huchet V; Chaix E; Loriot C; Vincelot T; Thuault D
    Food Microbiol; 2016 Sep; 58():43-55. PubMed ID: 27217358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered regulation of macromolecular synthesis in methionine-inhibited cultures of Pseudomonas fluorescens UK1.
    Laakso S
    Chem Biol Interact; 1977 Feb; 16(2):201-6. PubMed ID: 403021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate.
    Bäumchen C; Knoll A; Husemann B; Seletzky J; Maier B; Dietrich C; Amoabediny G; Büchs J
    J Biotechnol; 2007 Mar; 128(4):868-74. PubMed ID: 17275119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production and properties of an alkaline, thermophilic lipase from Pseudomonas fluorescens NS2W.
    Kulkarni N; Gadre RV
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):344-8. PubMed ID: 12032808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth temperature controls the production of a single extracellular protease by Pseudomonas fluorescens MF0, in the presence of various inducers.
    Hellio FC; Orange N; Guespin-Michel JF
    Res Microbiol; 1993 Oct; 144(8):617-25. PubMed ID: 8140280
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial effect and mechanism of non-antibiotic alkyl gallates against Pseudomonas fluorescens on the surface of Russian sturgeon (Acipenser gueldenstaedti).
    Zhang RR; Shi YG; Gu Q; Fang M; Chen YW; Fang S; Dang YL; Chen JS
    Int J Food Microbiol; 2021 Mar; 342():109093. PubMed ID: 33607540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of phenolic acids on indole acetic acid production and on the type III secretion system gene transcription in food-associated Pseudomonas fluorescens KM05.
    Myszka K; Schmidt MT; Olejnik-Schmidt AK; Leja K; Czaczyk K
    J Biosci Bioeng; 2014 Dec; 118(6):651-6. PubMed ID: 24994472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of chemical speciation in growth media on the toxicity of mercury(II).
    Farrell RE; Germida JJ; Huang PM
    Appl Environ Microbiol; 1993 May; 59(5):1507-14. PubMed ID: 8517745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous flow nonthermal CO2 processing: the lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk.
    Werner BG; Hotchkiss JH
    J Dairy Sci; 2006 Mar; 89(3):872-81. PubMed ID: 16507680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.