These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11775142)

  • 1. Estimate of mercury emissions to the atmosphere from petroleum.
    Wilhelm SM
    Environ Sci Technol; 2001 Dec; 35(24):4704-10. PubMed ID: 11775142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global mercury emissions from combustion in light of international fuel trading.
    Chen Y; Wang R; Shen H; Li W; Chen H; Huang Y; Zhang Y; Chen Y; Su S; Lin N; Liu J; Li B; Wang X; Liu W; Coveney RM; Tao S
    Environ Sci Technol; 2014; 48(3):1727-35. PubMed ID: 24433051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury in crude oil processed in the United States (2004).
    Wilhelm SM; Liang L; Cussen D; Kirchgessner DA
    Environ Sci Technol; 2007 Jul; 41(13):4509-14. PubMed ID: 17695889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combustion emissions from refining lower quality oil: what is the global warming potential?
    Karras G
    Environ Sci Technol; 2010 Dec; 44(24):9584-9. PubMed ID: 21114339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of mercury emission from different sources to atmosphere in Chongqing, China.
    Wang D; He L; Wei S; Feng X
    Sci Total Environ; 2006 Aug; 366(2-3):722-8. PubMed ID: 16219340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Seasonal variation of total gaseous mercury in Changbai Mountain area].
    Wan Q; Feng XB; Zheng W; Lu YJ; Han SJ; Xu H
    Huan Jing Ke Xue; 2008 Feb; 29(2):296-9. PubMed ID: 18613494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.
    Cai H; Brandt AR; Yeh S; Englander JG; Han J; Elgowainy A; Wang MQ
    Environ Sci Technol; 2015 Jul; 49(13):8219-27. PubMed ID: 26054375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury emission estimates from fires: an initial inventory for the United States.
    Wiedinmyer C; Friedli H
    Environ Sci Technol; 2007 Dec; 41(23):8092-8. PubMed ID: 18186342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atmospheric mercury emissions from waste combustions measured by continuous monitoring devices.
    Takahashi F; Shimaoka T; Kida A
    J Air Waste Manag Assoc; 2012 Jun; 62(6):686-95. PubMed ID: 22788107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of mercury emissions to the atmosphere from coal combustion, China.
    Zhang MQ; Zhu YC; Deng RW
    Ambio; 2002 Sep; 31(6):482-4. PubMed ID: 12436847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
    Tang S; Feng X; Qiu J; Yin G; Yang Z
    Environ Res; 2007 Oct; 105(2):175-82. PubMed ID: 17517388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotopic Evidence Unveils Fossil Fuels Contribution to Atmospheric Iodine.
    Fan Y; Xu H; Hou X; Zhou W; Zhang L; Chen N
    Environ Sci Technol; 2023 Dec; 57(49):20773-20780. PubMed ID: 37906162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.
    Sun R; Sonke JE; Heimbürger LE; Belkin HE; Liu G; Shome D; Cukrowska E; Liousse C; Pokrovsky OS; Streets DG
    Environ Sci Technol; 2014 Jul; 48(13):7660-8. PubMed ID: 24905585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of liquefied petroleum gas to air pollution in the metropolitan area of Mexico City.
    Gamas ED; Magdaleno M; Díaz L; Schifter I; Ontiveros L; Alvarez-Cansino G
    J Air Waste Manag Assoc; 2000 Feb; 50(2):188-98. PubMed ID: 10680348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the emission sources of atmospheric mercury in wet deposition across Illinois.
    Gratz LE; Keeler GJ; Morishita M; Barres JA; Dvonch JT
    Sci Total Environ; 2013 Mar; 448():120-31. PubMed ID: 23199452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a health effects-based priority ranking system for air emissions reductions from oil refineries in Canada.
    Gower S; Hicks J; Shortreed J; Craig L; McColl S
    J Toxicol Environ Health A; 2008; 71(1):81-5. PubMed ID: 18080898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.
    Wang S; Luo K; Wang X; Sun Y
    Environ Pollut; 2016 Feb; 209():107-13. PubMed ID: 26650082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of passive sampling methods and models to understand sources of mercury deposition to high elevation sites in the Western United States.
    Huang J; Gustin MS
    Environ Sci Technol; 2015 Jan; 49(1):432-41. PubMed ID: 25485926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury emission inventory and its spatial characteristics in the Pearl River Delta region, China.
    Zheng J; Ou J; Mo Z; Yin S
    Sci Total Environ; 2011 Dec; 412-413():214-22. PubMed ID: 22078372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.