These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11776230)

  • 1. Myoelectric signal classification using neural networks.
    Ungureanu M; Strungaru R; Lazarescu V
    Biomed Tech (Berl); 1998; 43 Suppl 3():87-90. PubMed ID: 11776230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial EMG generation model based on signal-dependent noise and related application to motion classification.
    Furui A; Hayashi H; Nakamura G; Chin T; Tsuji T
    PLoS One; 2017; 12(6):e0180112. PubMed ID: 28640883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatial integration effect of surface electrode detecting myoelectric signal.
    Helal JN; Bouissou P
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1161-7. PubMed ID: 1487279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMG signal classification for myoelectric teleoperating a dexterous robot hand.
    Wang JZ; Wang RC; Li F; Jiang MW; Jin DW
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5931-3. PubMed ID: 17281611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of subcutaneous fat on myoelectric signal amplitude and cross-talk.
    Kuiken TA; Lowery MM; Stoykov NS
    Prosthet Orthot Int; 2003 Apr; 27(1):48-54. PubMed ID: 12812327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification complexity in myoelectric pattern recognition.
    Nilsson N; HÃ¥kansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic diagnosis of neuro-muscular diseases using neural network.
    Kumaravel N; Kavitha V
    Biomed Sci Instrum; 1994; 30():245-50. PubMed ID: 7948644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of externally applied forces to human hands using frequency content of surface EMG signals.
    Arslan YZ; Adli MA; Akan A; Baslo MB
    Comput Methods Programs Biomed; 2010 Apr; 98(1):36-44. PubMed ID: 19762107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Decomposition of EMG signals based on combination of information diffusion theory and fuzzy neural network].
    Qian XJ; Yang JH; Liang Z; Chen X; Zhou P; Feng HQ
    Space Med Med Eng (Beijing); 2003 Oct; 16(5):354-9. PubMed ID: 14753236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training.
    Nielsen JL; Holmgaard S; Jiang N; Englehart KB; Farina D; Parker PA
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):681-8. PubMed ID: 20729161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive cancellation technique in processing myoelectric activity of respiratory muscles.
    Akkiraju P; Reddy DC
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):652-5. PubMed ID: 1601447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically evoked myoelectric signals.
    Merletti R; Knaflitz M; DeLuca CJ
    Crit Rev Biomed Eng; 1992; 19(4):293-340. PubMed ID: 1563271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion Artifact Suppression for Insulated EMG to Control Myoelectric Prostheses.
    Roland T
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.
    Raj R; Sivanandan KS
    J Back Musculoskelet Rehabil; 2017; 30(3):515-525. PubMed ID: 27858692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and classification of compressed EMG signals by wavelet transform via alternative neural networks algorithms.
    Ozsert M; Yavuz O; Durak-Ata L
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):521-5. PubMed ID: 20645198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature-based classification of myoelectric signals using artificial neural networks.
    Gallant PJ; Morin EL; Peppard LE
    Med Biol Eng Comput; 1998 Jul; 36(4):485-9. PubMed ID: 10198534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of smoothing window length on electromyogram amplitude estimates.
    St-Amant Y; Rancourt D; Clancy EA
    IEEE Trans Biomed Eng; 1998 Jun; 45(6):795-800. PubMed ID: 9609944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Finite Element Model Approach to Determine the Influence of Electrode Design and Muscle Architecture on Myoelectric Signal Properties.
    Teklemariam A; Hodson-Tole EF; Reeves ND; Costen NP; Cooper G
    PLoS One; 2016; 11(2):e0148275. PubMed ID: 26886908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.