BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11776933)

  • 1. [Regulation of adherence to serum-coated hydroxyapatite by Streptococcus sanguis].
    Song X; Pan Y; Kong Q
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1999 May; 34(3):172-4. PubMed ID: 11776933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of neuraminidase on the adherence to salivary pellicle of Streptococcus sanguis and Streptococcus mitis.
    Liljemark WF; Bloomquist CG; Fenner LJ; Antonelli PJ; Coulter MC
    Caries Res; 1989; 23(3):141-5. PubMed ID: 2736574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of protease on cell surface structure, hydrophobicity and adhesion of tufted strains of Streptococcus sanguis biotypes I and II.
    Hesketh LM; Wyatt JE; Handley PS
    Microbios; 1987; 50(204-205):131-45. PubMed ID: 3302619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of calcium on adherence of Streptococcus mutans MT6R(serotype c) surface protein P1].
    Huang D; Luo Z; Zhou X
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2000 Jun; 18(3):163-4, 180. PubMed ID: 12539667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effects of lipoteichoic acid and calcium on the adherence of oral streptococci in vitro].
    Li M; Liu Z
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1996 Jan; 31(1):9-11. PubMed ID: 9275604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of an hydroxyapatite adhesion assay for Streptococcus sanguis.
    Eifert R; Rosan B; Golub E
    Infect Immun; 1984 May; 44(2):287-91. PubMed ID: 6325348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compounds which affect the adherence of Streptococcus sanguis and Streptococcus mutans to hydroxyapatite.
    Liljemark WF; Schauer SV; Bloomquist CG
    J Dent Res; 1978 Feb; 57(2):373-9. PubMed ID: 308071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of correlation between fibrils, hydrophobicity and adhesion for strains of Streptococcus sanguis biotypes I and II.
    Wyatt JE; Hesketh LM; Handley PS
    Microbios; 1987; 50(202):7-15. PubMed ID: 2885724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between GIC and S. sanguis biofilms: antibacterial properties and changes of surface hardness.
    Hengtrakool C; Pearson GJ; Wilson M
    J Dent; 2006 Sep; 34(8):588-97. PubMed ID: 16540228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Scanning electron microscope observation of morphological influence P-aminobenzoic acid (PABA) on Porphyromonas gingivalis].
    Wang Z; Xiao X; Zhou X
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2003 Aug; 21(4):277-80. PubMed ID: 14513582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemostat studies of the effect of environmental control on Streptococcus sanguis adherence to hydroxyapatite.
    Rosan B; Appelbaum B; Campbell LK; Knox KW; Wicken AJ
    Infect Immun; 1982 Jan; 35(1):64-70. PubMed ID: 6274803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergy of binary poly(oxypropylene-oxyethylene) copolymers in reducing retention of Streptococcus sanguis to hydroxyapatite.
    Guan YH; Lilley TH; Lath DL; Marlow I; Brook AH
    Caries Res; 2003; 37(1):71-8. PubMed ID: 12566643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the cooperative adhesion of Streptococcus sanguis to hydroxylapatite.
    Zhang XH; Rosenberg M; Doyle RJ
    FEMS Microbiol Lett; 1990 Sep; 59(3):315-8. PubMed ID: 2177022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucosyltransferase phase variation in Streptococcus gordonii modifies adhesion to saliva-coated hydroxyapatite surfaces in a sucrose-independent manner.
    Vickerman MM; Clewell DB; Jones GW
    Oral Microbiol Immunol; 1992 Apr; 7(2):118-20. PubMed ID: 1388259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro modulation of oral bacterial adhesion to saliva-coated hydroxyapatite beads by milk casein derivatives.
    Neeser JR; Golliard M; Woltz A; Rouvet M; Dillmann ML; Guggenheim B
    Oral Microbiol Immunol; 1994 Aug; 9(4):193-201. PubMed ID: 7478758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of basic and acidic synthetic polypeptides on the adherence of the oral bacteria, Streptococcus mutans and Streptococcus sanguis, to hydroxyapatite.
    Lamberts BL; Pederson ED; Simonson LG
    Arch Oral Biol; 1985; 30(3):295-8. PubMed ID: 2581534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface free energy and bacterial retention to saliva-coated dental implant materials--an in vitro study.
    Mabboux F; Ponsonnet L; Morrier JJ; Jaffrezic N; Barsotti O
    Colloids Surf B Biointerfaces; 2004 Dec; 39(4):199-205. PubMed ID: 15555904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary bacterial colonization of implant surfaces.
    Drake DR; Paul J; Keller JC
    Int J Oral Maxillofac Implants; 1999; 14(2):226-32. PubMed ID: 10212539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation of Streptococcus sanguis biotypes I and II by parotid saliva: a comparison between peritrichously fibrillar and tufted strains.
    Wyatt JE; Handley PS
    Microbios; 1987; 51(207):113-23. PubMed ID: 3657600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of adhesion of viridans streptococci to fibronectin-coated hydroxyapatite beads by lipoteichoic acid.
    Hogg SD; Manning JE
    J Appl Bacteriol; 1988 Dec; 65(6):483-9. PubMed ID: 2854117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.