BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11777403)

  • 1. Hydrophilic polymeric acylphospine oxide photoinitiators/crosslinkers for in vivo blue-light photopolymerization.
    de Groot JH; Dillingham K; Deuring H; Haitjema HJ; van Beijma FJ; Hodd K; Norrby S
    Biomacromolecules; 2001; 2(4):1271-8. PubMed ID: 11777403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility.
    Fairbanks BD; Schwartz MP; Bowman CN; Anseth KS
    Biomaterials; 2009 Dec; 30(35):6702-7. PubMed ID: 19783300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable intraocular lens materials based upon hydrogels.
    de Groot JH; van Beijma FJ; Haitjema HJ; Dillingham KA; Hodd KA; Koopmans SA; Norrby S
    Biomacromolecules; 2001; 2(3):628-34. PubMed ID: 11710014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization.
    Carr LR; Zhou Y; Krause JE; Xue H; Jiang S
    Biomaterials; 2011 Oct; 32(29):6893-9. PubMed ID: 21704366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units.
    Neumann MG; Schmitt CC; Ferreira GC; Corrêa IC
    Dent Mater; 2006 Jun; 22(6):576-84. PubMed ID: 16289725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} hydrogels containing peptide-based cross-linking agents.
    Casadio YS; Brown DH; Chirila TV; Kraatz HB; Baker MV
    Biomacromolecules; 2010 Nov; 11(11):2949-59. PubMed ID: 20961104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth)acrylamides.
    Kostina NY; Rodriguez-Emmenegger C; Houska M; Brynda E; Michálek J
    Biomacromolecules; 2012 Dec; 13(12):4164-70. PubMed ID: 23157270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility.
    Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE
    Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Phosphine Oxides as High Performance Near- UV Type I Photoinitiators of Radical Polymerization.
    Dietlin C; Trinh TT; Schweizer S; Graff B; Morlet-Savary F; Noirot PA; Lalevée J
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32260383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels.
    Lee BP; Huang K; Nunalee FN; Shull KR; Messersmith PB
    J Biomater Sci Polym Ed; 2004; 15(4):449-64. PubMed ID: 15212328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-healing hydrogels containing reversible oxime crosslinks.
    Mukherjee S; Hill MR; Sumerlin BS
    Soft Matter; 2015 Aug; 11(30):6152-61. PubMed ID: 26143752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization.
    Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J
    J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res A; 2007 Sep; 82(3):637-50. PubMed ID: 17323316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.
    García-Millán E; Koprivnik S; Otero-Espinar FJ
    Int J Pharm; 2015 Jun; 487(1-2):260-9. PubMed ID: 25891253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-crosslinked biodegradable hydrogels prepared from fumaric acid monoethyl ester-functionalized oligomers for protein delivery.
    Jansen J; Mihov G; Feijen J; Grijpma DW
    Macromol Biosci; 2012 May; 12(5):692-702. PubMed ID: 22416030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymers of 1-vinyl-2-pyrrolidinone as potential vitreous substitutes: physical selection.
    Hong Y; Chirila TV; Cuypers MJ; Constable IJ
    J Biomater Appl; 1996 Oct; 11(2):135-81. PubMed ID: 8913849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroconductive hydrogels: synthesis, characterization and biomedical applications.
    Guiseppi-Elie A
    Biomaterials; 2010 Apr; 31(10):2701-16. PubMed ID: 20060580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.