These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 11777453)
1. A density functional theory investigation of the Simmons-Smith cyclopropanation reaction: examination of the insertion reaction of zinc into the C-I bond of CH(2)I(2) and subsequent cyclopropanation reactions. Fang WH; Phillips DL; Wang DQ; Li YL J Org Chem; 2002 Jan; 67(1):154-60. PubMed ID: 11777453 [TBL] [Abstract][Full Text] [Related]
2. Density functional theory investigation of the remarkable reactivity of geminal dizinc carbenoids (RZn)(2)CHI (R = Et or I) as cyclopropanation reagents with olefins compared to mono zinc carbenoids RZnCHI(2), EtCHIZnR (R = Et or I). Zhao C; Wang D; Phillips DL J Am Chem Soc; 2002 Oct; 124(43):12903-14. PubMed ID: 12392439 [TBL] [Abstract][Full Text] [Related]
3. Density functional theory study of the mechanism and origins of stereoselectivity in the asymmetric Simmons-Smith cyclopropanation with Charette chiral dioxaborolane ligand. Wang T; Liang Y; Yu ZX J Am Chem Soc; 2011 Jun; 133(24):9343-53. PubMed ID: 21627114 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study of samarium (II) carbenoid (ISmCH2I) promoted cyclopropanation reactions with ethylene and the effect of THF solvent on the reaction pathways. Zhao C; Wang D; Phillips DL J Am Chem Soc; 2003 Dec; 125(49):15200-9. PubMed ID: 14653755 [TBL] [Abstract][Full Text] [Related]
5. On the mechanism and stereochemistry of chiral lithium-carbenoid-promoted cyclopropanation reactions. Ke Z; Zhou Y; Gao H; Zhao C; Phillips DL Chemistry; 2007; 13(23):6724-31. PubMed ID: 17508383 [TBL] [Abstract][Full Text] [Related]
6. Reaction pathways of the Simmons-Smith reaction. Nakamura M; Hirai A; Nakamura E J Am Chem Soc; 2003 Feb; 125(8):2341-50. PubMed ID: 12590564 [TBL] [Abstract][Full Text] [Related]
7. Efficient approaches to the stereoselective synthesis of cyclopropyl alcohols. Kim HY; Walsh PJ Acc Chem Res; 2012 Sep; 45(9):1533-47. PubMed ID: 22725974 [TBL] [Abstract][Full Text] [Related]
8. Asymmetric Simmons-Smith cyclopropanation of unfunctionalized olefins. Long J; Yuan Y; Shi Y J Am Chem Soc; 2003 Nov; 125(45):13632-3. PubMed ID: 14599180 [TBL] [Abstract][Full Text] [Related]
9. The effect of additives on the zinc carbenoid-mediated cyclopropanation of a dihydropyrrole. Ramirez A; Truc VC; Lawler M; Ye YK; Wang J; Wang C; Chen S; Laporte T; Liu N; Kolotuchin S; Jones S; Bordawekar S; Tummala S; Waltermire RE; Kronenthal D J Org Chem; 2014 Jul; 79(13):6233-43. PubMed ID: 24915024 [TBL] [Abstract][Full Text] [Related]
10. Iodomethylzinc phosphates: powerful reagents for the cyclopropanation of alkenes. Lacasse MC; Poulard C; Charette AB J Am Chem Soc; 2005 Sep; 127(36):12440-1. PubMed ID: 16144362 [TBL] [Abstract][Full Text] [Related]
11. Simmons-Smith Cyclopropanation: A Multifaceted Synthetic Protocol toward the Synthesis of Natural Products and Drugs: A Review. Munir R; Zahoor AF; Javed S; Parveen B; Mansha A; Irfan A; Khan SG; Irfan A; Kotwica-Mojzych K; Mojzych M Molecules; 2023 Jul; 28(15):. PubMed ID: 37570621 [TBL] [Abstract][Full Text] [Related]
12. Isotope effects and the nature of selectivity in rhodium-catalyzed cyclopropanations. Nowlan DT; Gregg TM; Davies HM; Singleton DA J Am Chem Soc; 2003 Dec; 125(51):15902-11. PubMed ID: 14677982 [TBL] [Abstract][Full Text] [Related]
13. Intramolecular Simmons-Smith cyclopropanation. Studies into the reactivity of alkyl-substituted zinc carbenoids, effect of directing groups and synthesis of bicyclo[n.1.0]alkanes. Bull JA; Charette AB J Am Chem Soc; 2010 Feb; 132(6):1895-902. PubMed ID: 20092247 [TBL] [Abstract][Full Text] [Related]
14. A novel class of tunable cyclopropanation reagents (RXZnCH2Y) and their synthetic applications. Cornwall RG; Wong OA; Du H; Ramirez TA; Shi Y Org Biomol Chem; 2012 Aug; 10(29):5498-513. PubMed ID: 22688971 [TBL] [Abstract][Full Text] [Related]
15. Dual role of silanol groups in cyclopropanation and Hiyama-Denmark cross-coupling reactions. Beaulieu LP; Delvos LB; Charette AB Org Lett; 2010 Mar; 12(6):1348-51. PubMed ID: 20180515 [TBL] [Abstract][Full Text] [Related]
16. Density functional theory investigation of the reactions of isodihalomethanes (CH(2)X-X where X = Cl, Br, or I) with ethylene: substituent effects on the carbenoid behavior of the CH(2)X-X species. Phillips DL; Fang WH J Org Chem; 2001 Aug; 66(17):5890-6. PubMed ID: 11511267 [TBL] [Abstract][Full Text] [Related]
17. Theoretical study on cyclopropanation of endo-dicyclopentadiene with zinc carbenoids: effects of solvent and (ICH2)2Zn. Feng R; Zou JJ; Zhang X; Wang L; Zhao H J Org Chem; 2012 Nov; 77(22):10065-72. PubMed ID: 23088688 [TBL] [Abstract][Full Text] [Related]
18. Density functional theory investigations on sulfur ylide promoted cyclopropanation reactions: insights on mechanism and diastereoselection issues. Janardanan D; Sunoj RB J Org Chem; 2007 Jan; 72(2):331-41. PubMed ID: 17221947 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic studies on a dipeptide-promoted asymmetric cyclopropanation of unfunctionalized olefins. Long J; Xu L; Du H; Li K; Shi Y Org Lett; 2009 Nov; 11(22):5226-9. PubMed ID: 19842709 [TBL] [Abstract][Full Text] [Related]
20. Methylene transfer or carbometalation? A theoretical study to determine the mechanism of lithium carbenoid-promoted cyclopropanation reactions in aggregation and solvation States. Ke Z; Zhao C; Phillips DL J Org Chem; 2007 Feb; 72(3):848-60. PubMed ID: 17253804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]