These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 117781)

  • 1. Separation and identification of the carotenoid pigments of stigmata isolated from light-grown cells of Euglena gracilis strain Z.
    Heelis DV; Kernick W; Phillips GO; Davies K
    Arch Microbiol; 1979 Jun; 121(3):207-11. PubMed ID: 117781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological role of β-carotene monohydroxylase (CYP97H1) in carotenoid biosynthesis in Euglena gracilis.
    Tamaki S; Kato S; Shinomura T; Ishikawa T; Imaishi H
    Plant Sci; 2019 Jan; 278():80-87. PubMed ID: 30471732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stigma of Euglena gracilis strain Z: an investigation into the possible occurrence of carotenoproteins and nucleic acids.
    Heelis DV; Heelis PF; Kernick WA; Phillips GO
    Cytobios; 1980; 29(115-116):135-43. PubMed ID: 6162617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low Temperature Stress Alters the Expression of Phytoene Desaturase Genes (crtP1 and crtP2) and the ζ-Carotene Desaturase Gene (crtQ) Together with the Cellular Carotenoid Content of Euglena gracilis.
    Kato S; Tanno Y; Takaichi S; Shinomura T
    Plant Cell Physiol; 2019 Feb; 60(2):274-284. PubMed ID: 30346581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and functional analysis of the geranylgeranyl pyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis.
    Kato S; Takaichi S; Ishikawa T; Asahina M; Takahashi S; Shinomura T
    BMC Plant Biol; 2016 Jan; 16():4. PubMed ID: 26733341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis.
    Kato S; Soshino M; Takaichi S; Ishikawa T; Nagata N; Asahina M; Shinomura T
    BMC Plant Biol; 2017 Jul; 17(1):125. PubMed ID: 28716091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sterol biosynthesis in Euglena gracilis Z. Sterol precursors in light-grown and dark-grown Euglena gracilis Z.
    Anding C; Brandt RD; Ourisson G
    Eur J Biochem; 1971 Dec; 24(2):259-63. PubMed ID: 5003307
    [No Abstract]   [Full Text] [Related]  

  • 8. Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis.
    Tanno Y; Kato S; Takahashi S; Tamaki S; Takaichi S; Kodama Y; Sonoike K; Shinomura T
    J Photochem Photobiol B; 2020 Aug; 209():111950. PubMed ID: 32682285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and genetic carotenoid deficiency delays growth in dark-grown Euglena gracilis.
    Tamaki S; Koshitsuka Y; Miyamoto K; Ishikawa T; Shinomura T
    Biosci Biotechnol Biochem; 2023 Apr; 87(5):491-500. PubMed ID: 36869792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomic response of Euglena gracilis and its bleached mutant strain to light.
    Shao Q; Hu L; Qin H; Liu Y; Tang X; Lei A; Wang J
    PLoS One; 2019; 14(11):e0224926. PubMed ID: 31697795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-induced changes of radioactivities in the 14C-labeled lipids and fatty acids of dark grown Euglena gracilis.
    Pohl P
    Z Naturforsch C; 1973; 28(5):264-9. PubMed ID: 4272178
    [No Abstract]   [Full Text] [Related]  

  • 12. Carotenoid accumulation in the eyespot apparatus required for phototaxis is independent of chloroplast development in Euglena gracilis.
    Tamaki S; Tanno Y; Kato S; Ozasa K; Wakazaki M; Sato M; Toyooka K; Maoka T; Ishikawa T; Maeda M; Shinomura T
    Plant Sci; 2020 Sep; 298():110564. PubMed ID: 32771165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic properties and related functions of the stigma measured in living cells of Euglena gracilis.
    Benedetti PA; Bianchini G; Checcucci A; Ferrara R; Grassi S
    Arch Microbiol; 1976 Dec; 111(1-2):73-6. PubMed ID: 828030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of streptomycin on the structure and function of the photoreceptor apparatus of Euglena gracilis.
    Ferrara R; Banchetti R
    J Exp Zool; 1976 Dec; 198(3):393-402. PubMed ID: 826601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does variability in carotenoid composition and concentration in tissues of the breast and reproductive tract in women depend on type of lesion?
    Czeczuga-Semeniuk E; Wołczyński S
    Adv Med Sci; 2008; 53(2):270-7. PubMed ID: 19095580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of carotenoid pigments of Micrococcus roseus.
    Ungers GE; Cooney JJ
    J Bacteriol; 1968 Jul; 96(1):234-41. PubMed ID: 5663569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena gracilis.
    Kim D; Filtz MR; Proteau PJ
    J Nat Prod; 2004 Jun; 67(6):1067-9. PubMed ID: 15217299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroplast pigments of the marine dinoflagellateGyrodinium resplendens.
    Loeblich AR; Smith VE
    Lipids; 1968 Jan; 3(1):5-13. PubMed ID: 17805834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast, sensitive, and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss peak spectra.
    Küpper H; Seibert S; Parameswaran A
    Anal Chem; 2007 Oct; 79(20):7611-27. PubMed ID: 17854156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and identification of echinenone from Micrococcus roseus.
    Schwartzel EH; Cooney JJ
    J Bacteriol; 1970 Oct; 104(1):272-4. PubMed ID: 5473895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.