These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11778711)

  • 1. Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures.
    Moreno E; Erni D; Hafner C; Vahldieck R
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):101-11. PubMed ID: 11778711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation of multipole plasmons by optical vortex beams.
    Sakai K; Nomura K; Yamamoto T; Sasaki K
    Sci Rep; 2015 Feb; 5():8431. PubMed ID: 25672226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple multipole method for simulating EM problems involving biological bodies.
    Kuster N
    IEEE Trans Biomed Eng; 1993 Jul; 40(7):611-20. PubMed ID: 8244422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing the Accuracy and Efficiency of Fast Hierarchical Multipole Expansions for MD Simulations.
    Lorenzen K; Schwörer M; Tröster P; Mates S; Tavan P
    J Chem Theory Comput; 2012 Oct; 8(10):3628-36. PubMed ID: 26593008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of finite-sized guided-mode resonant gratings using the fast multipole boundary element method.
    Sato A
    J Opt Soc Am A Opt Image Sci Vis; 2010 Sep; 27(9):1909-19. PubMed ID: 20808397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromagnetic wave scattering by highly elongated and geometrically composite objects of large size parameters: the generalized multipole technique.
    Al-Rizzo HM; Tranquilla JM
    Appl Opt; 1995 Jun; 34(18):3502-21. PubMed ID: 21052166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved method for calculating resonances of multiple dielectric disks arbitrarily positioned in the plane.
    Schwefel HG; Poulton CG
    Opt Express; 2009 Jul; 17(15):13178-86. PubMed ID: 19654723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.
    Dhawan A; Norton SJ; Gerhold MD; Vo-Dinh T
    Opt Express; 2009 Jun; 17(12):9688-703. PubMed ID: 19506618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward ultimate nanoplasmonics modeling.
    Solís DM; Taboada JM; Obelleiro F; Liz-Marzán LM; García de Abajo FJ
    ACS Nano; 2014 Aug; 8(8):7559-70. PubMed ID: 25077678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of Electron Energy Loss Spectroscopy using a Generalized Multipole Technique.
    Kiewidt L; Karamehmedović M; Matyssek C; Hergert W; Mädler L; Wriedt T
    Ultramicroscopy; 2013 Oct; 133():101-8. PubMed ID: 23969065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AUTOMATIC GENERATION OF FFT FOR TRANSLATIONS OF MULTIPOLE EXPANSIONS IN SPHERICAL HARMONICS.
    Kurzak J; Mirkovic D; Pettitt BM; Johnsson SL
    Int J High Perform Comput Appl; 2008 Jan; 22(2):219-230. PubMed ID: 19763233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of localized surface plasmons and hybridized surface plasmon polaritons on self-assembled two-dimensional nanocavities.
    Xiong Q; Wei J; Mahpeykar SM; Meng L; Wang X
    Opt Lett; 2016 Apr; 41(7):1506-9. PubMed ID: 27192273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffraction theory: application of the fast Fourier factorization to cylindrical devices with arbitrary cross section lighted in conical mounting.
    Boyer P; Popov E; Nevière M; Renversez G
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1146-58. PubMed ID: 16642193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of scattering of a plane wave from multiple prolate spheroids using the collocation multipole method.
    Lee WM; Chen JT
    J Acoust Soc Am; 2016 Oct; 140(4):2235. PubMed ID: 27794351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach.
    Gallinet B; Kern AM; Martin OJ
    J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2261-71. PubMed ID: 20922017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient implementation of the fast multipole method.
    Rudberg E; Sałek P
    J Chem Phys; 2006 Aug; 125(8):084106. PubMed ID: 16965000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic nanocluster gratings generated by near-field coupling of localized surface plasmons.
    Won HS; Song SH
    Opt Express; 2006 Nov; 14(24):11814-22. PubMed ID: 19529604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discontinuous Galerkin time-domain computations of metallic nanostructures.
    Stannigel K; König M; Niegemann J; Busch K
    Opt Express; 2009 Aug; 17(17):14934-47. PubMed ID: 19687972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic multipole sources for the regularized lattice Boltzmann method: Comparison with multiple-relaxation-time models in the inviscid limit.
    Zhuo C; Sagaut P
    Phys Rev E; 2017 Jun; 95(6-1):063301. PubMed ID: 28709303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multipole Dirichlet-to-Neumann map method for photonic crystals with complex unit cells.
    Li S; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2007 Aug; 24(8):2438-42. PubMed ID: 17621348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.