These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 11778937)
1. Differential fraction-based kinetic model for simulating hydrodesulfurization process of petroleum fraction. Zhao W; Chen D; Hu S Comput Chem; 2002 Jan; 26(2):141-8. PubMed ID: 11778937 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Ultradeep Hydrodesulfurization of Coker Diesel through Adsorptive Predenitrogenation. Ghaloum N; Safa MA; Albazzaz H; Alshemali MS; Jose S; Ma X ACS Omega; 2024 Oct; 9(39):41011-41020. PubMed ID: 39372003 [TBL] [Abstract][Full Text] [Related]
3. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo and CoMo sulfide catalysts: kinetic modeling approach for estimating selectivity. Farag H J Colloid Interface Sci; 2010 Aug; 348(1):219-26. PubMed ID: 20488450 [TBL] [Abstract][Full Text] [Related]
4. Nanoparticle catalyzed hydrodesulfurization of diesel fuel in a trickle bed reactor: experimental and optimization study. Gheni SA; Awad SA; Ahmed SMR; Abdullah GH; Al Dahhan M RSC Adv; 2020 Sep; 10(56):33911-33927. PubMed ID: 35519034 [TBL] [Abstract][Full Text] [Related]
5. A comparative kinetic study on ultra-deep hydrodesulfurization of pre-treated gas oil over nanosized MoS2, CoMo-sulfide, and commercial CoMo/Al2O3 catalysts. Farag H; Mochida I J Colloid Interface Sci; 2012 Apr; 372(1):121-9. PubMed ID: 22297022 [TBL] [Abstract][Full Text] [Related]
6. Sulfur-33 Isotope Tracing of the Hydrodesulfurization Process: Insights into the Reaction Mechanism, Catalyst Characterization and Improvement. Sushkevich VL; Popov AG; Ivanova II Angew Chem Int Ed Engl; 2017 Aug; 56(36):10872-10876. PubMed ID: 28677257 [TBL] [Abstract][Full Text] [Related]
7. Liquid chromatographic properties of aromatic sulfur heterocycles on a Pd(II)-containing stationary phase for petroleum analysis. Sripada K; Andersson JT Anal Bioanal Chem; 2005 Jun; 382(3):735-41. PubMed ID: 15883789 [TBL] [Abstract][Full Text] [Related]
8. Microwave effects on NiMoS and CoMoS single-sheet catalysts. Borges I; Silva AM; Modesto-Costa L J Mol Model; 2018 May; 24(6):128. PubMed ID: 29728781 [TBL] [Abstract][Full Text] [Related]
9. A parallel colorimetric method for the rapid discovery and optimization of heterogeneous hydrodesulfurization catalysts. Staiger CL; Loy DA; Jamison GM; Schneider DA; Cornelius CJ J Am Chem Soc; 2003 Aug; 125(33):9920-1. PubMed ID: 12914444 [TBL] [Abstract][Full Text] [Related]
10. Fraction of the CoMoS phases accessible to NO in Co-Mo hydrodesulfurization catalysts. Okamoto Y; Kawano M; Kubota T Chem Commun (Camb); 2003 May; (9):1086-7. PubMed ID: 12772915 [TBL] [Abstract][Full Text] [Related]
11. Insight into thiophene hydrodesulfurization on clean and S-modified MoP(010): a periodic density functional theory study. Li G; Zhao L; Zhu H; Liu X; Ma H; Yu Y; Guo W Phys Chem Chem Phys; 2017 Jul; 19(26):17449-17460. PubMed ID: 28650500 [TBL] [Abstract][Full Text] [Related]
12. Development of toxicity criteria for petroleum hydrocarbon fractions in the Petroleum Hydrocarbon Criteria Working Group approach for risk-based management of total petroleum hydrocarbons in soil. Twerdok LE Drug Chem Toxicol; 1999 Feb; 22(1):275-91. PubMed ID: 10189583 [TBL] [Abstract][Full Text] [Related]
13. A review of metal recovery from spent petroleum catalysts and ash. Akcil A; Vegliò F; Ferella F; Okudan MD; Tuncuk A Waste Manag; 2015 Nov; 45():420-33. PubMed ID: 26188611 [TBL] [Abstract][Full Text] [Related]
14. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments. Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067 [TBL] [Abstract][Full Text] [Related]
15. Simulation and optimization technologies for petroleum waste management and remediation process control. Qin XS; Huang GH; He L J Environ Manage; 2009 Jan; 90(1):54-76. PubMed ID: 18694620 [TBL] [Abstract][Full Text] [Related]
16. Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB-based models. Braun-Sand S; Strajbl M; Warshel A Biophys J; 2004 Oct; 87(4):2221-39. PubMed ID: 15454425 [TBL] [Abstract][Full Text] [Related]
17. Gallium Modified HUSY Zeolite as an Effective Co-support for NiMo Hydrodesulfurization Catalyst and the Catalyst's High Isomerization Selectivity. Zhou W; Zhou Y; Wei Q; Du L; Ding S; Jiang S; Zhang Y; Zhang Q Chemistry; 2017 Jul; 23(39):9369-9382. PubMed ID: 28467608 [TBL] [Abstract][Full Text] [Related]
18. Emissions of polycyclic aromatic hydrocarbons from thermal pre-treatment of waste hydrodesulfurization catalysts. Lai YC; Lee WJ; Huang KL; Huang HH Chemosphere; 2007 Sep; 69(2):200-8. PubMed ID: 17531290 [TBL] [Abstract][Full Text] [Related]
19. [In situ FTIR and XPS study on selective hydrodesulfurization catalyst of FCC gasoline]. Qiherima ; Yuan H; Zhang YH; Li HF; Xu GT Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jul; 31(7):1752-7. PubMed ID: 21942017 [TBL] [Abstract][Full Text] [Related]
20. Scenario-based modelling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications. Vasudevan M; Nambi IM; Suresh Kumar G J Environ Manage; 2016 Jun; 175():9-19. PubMed ID: 27017268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]