These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11778943)

  • 1. High-order spatial discretisations in electrochemical digital simulation. Part 3. Combination with the explicit Runge-Kutta algorithm.
    Britz D; Osterby O; Strutwolf J; Svennesen TK
    Comput Chem; 2002 Jan; 26(2):97-103. PubMed ID: 11778943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High order spatial discretisations in electrochemical digital simulation. 2. Combination with the extrapolation algorithm.
    Strutwolf J; Britz D
    Comput Chem; 2001 Sep; 25(5):511-20. PubMed ID: 11513241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High order spatial discretisations in electrochemical digital simulation. 2. Combination with the extrapolation algorithm.
    Strutwolf J; Britz D
    Comput Chem; 2001 Mar; 25(2):205-14. PubMed ID: 11219436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-order spatial discretisations in electrochemical digital simulation. 1. Combination with the BDF algorithm.
    Britz D; Strutwolf J
    Comput Chem; 2000 Sep; 24(6):673-84. PubMed ID: 10966125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order spatial discretisations in electrochemical digital simulations. Part 4. Discretisation on an arbitrarily spaced grid.
    Britz D; Strutwolf J
    Comput Biol Chem; 2003 Jul; 27(3):327-37. PubMed ID: 12927107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge-Kutta and
    Gwinner J; Thalhammer M
    Found Comut Math; 2014; 14(5):913-949. PubMed ID: 26029034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Low-Dispersion and Low-Dissipation Implicit Runge-Kutta Scheme.
    Najafi-Yazdi A; Mongeau L
    J Comput Phys; 2013 Jan; 233():315-323. PubMed ID: 23243319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks.
    Shelley MJ; Tao L
    J Comput Neurosci; 2001; 11(2):111-9. PubMed ID: 11717528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical determination of continuous ray tracing: the four-component method.
    Puchalski J
    Appl Opt; 1994 Apr; 33(10):1900-6. PubMed ID: 20885524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping.
    Mukhsar ; Wibawa GNA; Tenriawaru A; Usman I; Firihu MZ; Variani VI; Mansur ABF; Basori AH
    MethodsX; 2023; 10():101979. PubMed ID: 36619373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations.
    Schleife A; Draeger EW; Kanai Y; Correa AA
    J Chem Phys; 2012 Dec; 137(22):22A546. PubMed ID: 23249083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates.
    Hejranfar K; Saadat MH; Taheri S
    Phys Rev E; 2017 Feb; 95(2-1):023314. PubMed ID: 28297984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages.
    Feigl GC; Hiergeist W; Fellner C; Schebesch KM; Doenitz C; Finkenzeller T; Brawanski A; Schlaier J
    World Neurosurg; 2014 Jan; 81(1):144-50. PubMed ID: 23295636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems.
    Simos TE; Aguiar JV
    Comput Chem; 2001 May; 25(3):275-81. PubMed ID: 11339410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher-order accurate space-time schemes for computational astrophysics-Part I: finite volume methods.
    Balsara DS
    Living Rev Comput Astrophys; 2017; 3(1):2. PubMed ID: 30652123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of Large Scale Neural Models With Event-Driven Connectivity Generation.
    Azevedo Carvalho N; Contassot-Vivier S; Buhry L; Martinez D
    Front Neuroinform; 2020; 14():522000. PubMed ID: 33154719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.
    Bell JB; Garcia AL; Williams SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016708. PubMed ID: 17677595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.