BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 11779040)

  • 21. Effects of perospirone (SM-9018), a potential atypical neuroleptic, on dopamine D1 receptor-mediated vacuous chewing movement in rats: a role of 5-HT2 receptor blocking activity.
    Ohno Y; Ishida-Tokuda K; Ishibashi T; Nakamura M
    Pharmacol Biochem Behav; 1997 Aug; 57(4):889-95. PubMed ID: 9259021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of haloperidol-induced pattern of c-fos expression by serotonin agonists.
    Tremblay PO; Gervais J; Rouillard C
    Eur J Neurosci; 1998 Nov; 10(11):3546-55. PubMed ID: 9824467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effects of serotonergic drugs on the up-regulation of dopamine D2 receptors induced by haloperidol in rat striatum].
    Ishikane T
    Hokkaido Igaku Zasshi; 1998 Sep; 73(5):441-9. PubMed ID: 9846274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protective effect of hesperetin against haloperidol-induced orofacial dyskinesia and catalepsy in rats.
    Dhingra D; Goswami S; Gahalain N
    Nutr Neurosci; 2018 Nov; 21(9):667-675. PubMed ID: 28641484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of N-methyl-D-aspartate receptor antagonism on neuroleptic-induced orofacial dyskinesias.
    Konitsiotis S; Tsironis C; Kiortsis DN; Evangelou A
    Psychopharmacology (Berl); 2006 Apr; 185(3):369-77. PubMed ID: 16518645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple 5-HT receptors in passive avoidance: comparative studies of p-chloroamphetamine and 8-OH-DPAT.
    Misane I; Ogren SO
    Neuropsychopharmacology; 2000 Feb; 22(2):168-90. PubMed ID: 10649830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single restraint stress sensitizes acute chewing movements induced by haloperidol, but not if the 5-HT1A agonist 8-OH-DPAT is given prior to stress.
    Fdez Espejo E; Gil E
    Brain Res; 1997 May; 755(2):351-5. PubMed ID: 9175906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of antipsychotics on haloperidol-induced vacuous chewing movements and subcortical gene expression in the rat.
    McCullumsmith RE; Stincic TL; Agrawal SM; Meador-Woodruff JH
    Eur J Pharmacol; 2003 Sep; 477(2):101-12. PubMed ID: 14519413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT(2A) and 5-HT(2C) receptor subtypes and significance of the haloperidol dose used.
    Lucas G; De Deurwaerdère P; Caccia S; Umberto Spampinato
    Neuropharmacology; 2000 Apr; 39(6):1053-63. PubMed ID: 10727716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacological characterization of in vivo properties of putative mixed 5-HT1A agonist/5-HT(2A/2C) antagonist anxiolytics. II. Drug discrimination and behavioral observation studies in rats.
    Kleven MS; Assié MB; Koek W
    J Pharmacol Exp Ther; 1997 Aug; 282(2):747-59. PubMed ID: 9262338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol.
    Egan MF; Hurd Y; Ferguson J; Bachus SE; Hamid EH; Hyde TM
    Psychopharmacology (Berl); 1996 Oct; 127(4):337-45. PubMed ID: 8923569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autoradiographic mapping of mu opioid receptor changes in rat brain after long-term haloperidol treatment: relationship to the development of vacuous chewing movements.
    Sasaki T; Kennedy JL; Nobrega JN
    Psychopharmacology (Berl); 1996 Nov; 128(1):97-104. PubMed ID: 8944412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Possible involvement of prostaglandins in haloperidol-induced orofacial dyskinesia in rats.
    Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2001 Nov; 430(2-3):295-8. PubMed ID: 11711046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversal of haloperidol-induced motor deficits by mianserin and mesulergine in rats.
    Shireen E; Haleem DJ
    Pak J Pharm Sci; 2011 Jan; 24(1):7-12. PubMed ID: 21190911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of chronic naloxone administration on vacuous chewing movements and catalepsy in rats treated with long-term haloperidol decanoate.
    Egan MF; Ferguson JN; Hyde TM
    Brain Res Bull; 1995; 38(4):355-63. PubMed ID: 8535858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia.
    Bishnoi M; Chopra K; Kulkarni SK
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 Aug; 32(6):1473-8. PubMed ID: 18554768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of 5-HT
    Fletcher PJ; Zeeb FD; Browne CJ; Higgins GA; Soko AD
    Psychopharmacology (Berl); 2017 Mar; 234(5):889-902. PubMed ID: 28097374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of serotonergic agents on the up-regulation of dopamine D2 receptors induced by haloperidol in rat striatum.
    Ishikane T; Kusumi I; Matsubara R; Matsubara S; Koyama T
    Eur J Pharmacol; 1997 Feb; 321(2):163-9. PubMed ID: 9063684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of streptozotocin-induced diabetes on dopamine2, serotonin1A and serotonin2A receptors in the rat brain.
    Sumiyoshi T; Ichikawa J; Meltzer HY
    Neuropsychopharmacology; 1997 Mar; 16(3):183-90. PubMed ID: 9138434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oral administration of haloperidol at clinically recommended doses elicits smaller parkinsonian effects but more tardive dyskinesia in rats.
    Shireen E; Naeem S; Inam QU; Haleem DJ
    Pak J Pharm Sci; 2013 Mar; 26(2):271-6. PubMed ID: 23455196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.