These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 11779503)

  • 1. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.
    Wu JW; Hu M; Chai J; Seoane J; Huse M; Li C; Rigotti DJ; Kyin S; Muir TW; Fairman R; Massagué J; Shi Y
    Mol Cell; 2001 Dec; 8(6):1277-89. PubMed ID: 11779503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of Smad2 recognition by the Smad anchor for receptor activation.
    Wu G; Chen YG; Ozdamar B; Gyuricza CA; Chong PA; Wrana JL; Massagué J; Shi Y
    Science; 2000 Jan; 287(5450):92-7. PubMed ID: 10615055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling.
    Hanyu A; Ishidou Y; Ebisawa T; Shimanuki T; Imamura T; Miyazono K
    J Cell Biol; 2001 Dec; 155(6):1017-27. PubMed ID: 11739411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling.
    Itoh S; Ericsson J; Nishikawa J; Heldin CH; ten Dijke P
    Nucleic Acids Res; 2000 Nov; 28(21):4291-8. PubMed ID: 11058129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a transcriptionally active Smad4 fragment.
    Qin B; Lam SS; Lin K
    Structure; 1999 Dec; 7(12):1493-503. PubMed ID: 10647180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of Smad1 activation by receptor kinase phosphorylation.
    Qin BY; Chacko BM; Lam SS; de Caestecker MP; Correia JJ; Lin K
    Mol Cell; 2001 Dec; 8(6):1303-12. PubMed ID: 11779505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway.
    Xu J; Attisano L
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4820-5. PubMed ID: 10781087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling.
    Mochizuki T; Miyazaki H; Hara T; Furuya T; Imamura T; Watabe T; Miyazono K
    J Biol Chem; 2004 Jul; 279(30):31568-74. PubMed ID: 15148321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction.
    Kuang C; Chen Y
    Oncogene; 2004 Feb; 23(5):1021-9. PubMed ID: 14647410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional conservation of Schistosoma mansoni Smads in TGF-beta signaling.
    Beall MJ; McGonigle S; Pearce EJ
    Mol Biochem Parasitol; 2000 Nov; 111(1):131-42. PubMed ID: 11087923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking Smads and transcriptional activation.
    Inman GJ
    Biochem J; 2005 Feb; 386(Pt 1):e1-e3. PubMed ID: 15702493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The TGF beta receptor activation process: an inhibitor- to substrate-binding switch.
    Huse M; Muir TW; Xu L; Chen YG; Kuriyan J; Massagué J
    Mol Cell; 2001 Sep; 8(3):671-82. PubMed ID: 11583628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization.
    Chacko BM; Qin B; Correia JJ; Lam SS; de Caestecker MP; Lin K
    Nat Struct Biol; 2001 Mar; 8(3):248-53. PubMed ID: 11224571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.
    Nakao A; Imamura T; Souchelnytskyi S; Kawabata M; Ishisaki A; Oeda E; Tamaki K; Hanai J; Heldin CH; Miyazono K; ten Dijke P
    EMBO J; 1997 Sep; 16(17):5353-62. PubMed ID: 9311995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential ubiquitination defines the functional status of the tumor suppressor Smad4.
    Morén A; Hellman U; Inada Y; Imamura T; Heldin CH; Moustakas A
    J Biol Chem; 2003 Aug; 278(35):33571-82. PubMed ID: 12794086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling.
    Wu JW; Krawitz AR; Chai J; Li W; Zhang F; Luo K; Shi Y
    Cell; 2002 Nov; 111(3):357-67. PubMed ID: 12419246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN.
    Mizuide M; Hara T; Furuya T; Takeda M; Kusanagi K; Inada Y; Mori M; Imamura T; Miyazawa K; Miyazono K
    J Biol Chem; 2003 Jan; 278(1):531-6. PubMed ID: 12426322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semisynthesis of phosphovariants of Smad2 reveals a substrate preference of the activated T beta RI kinase.
    Ottesen JJ; Huse M; Sekedat MD; Muir TW
    Biochemistry; 2004 May; 43(19):5698-706. PubMed ID: 15134444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of heteromeric smad protein assembly in TGF-beta signaling.
    Chacko BM; Qin BY; Tiwari A; Shi G; Lam S; Hayward LJ; De Caestecker M; Lin K
    Mol Cell; 2004 Sep; 15(5):813-23. PubMed ID: 15350224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.