BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11779505)

  • 1. Structural basis of Smad1 activation by receptor kinase phosphorylation.
    Qin BY; Chacko BM; Lam SS; de Caestecker MP; Correia JJ; Lin K
    Mol Cell; 2001 Dec; 8(6):1303-12. PubMed ID: 11779505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.
    Wu JW; Hu M; Chai J; Seoane J; Huse M; Li C; Rigotti DJ; Kyin S; Muir TW; Fairman R; Massagué J; Shi Y
    Mol Cell; 2001 Dec; 8(6):1277-89. PubMed ID: 11779503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a transcriptionally active Smad4 fragment.
    Qin B; Lam SS; Lin K
    Structure; 1999 Dec; 7(12):1493-503. PubMed ID: 10647180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The L3 loop and C-terminal phosphorylation jointly define Smad protein trimerization.
    Chacko BM; Qin B; Correia JJ; Lam SS; de Caestecker MP; Lin K
    Nat Struct Biol; 2001 Mar; 8(3):248-53. PubMed ID: 11224571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smad1 recognition and activation by the ALK1 group of transforming growth factor-beta family receptors.
    Chen YG; Massagué J
    J Biol Chem; 1999 Feb; 274(6):3672-7. PubMed ID: 9920917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional specificity of the Xenopus T-domain protein Brachyury is conferred by its ability to interact with Smad1.
    Messenger NJ; Kabitschke C; Andrews R; Grimmer D; Núñez Miguel R; Blundell TL; Smith JC; Wardle FC
    Dev Cell; 2005 Apr; 8(4):599-610. PubMed ID: 15809041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and expression of a rat Smad1: regulation by TGFbeta and modulation by the Ras/MEK pathway.
    Yue J; Hartsough MT; Frey RS; Frielle T; Mulder KM
    J Cell Physiol; 1999 Mar; 178(3):387-96. PubMed ID: 9989785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of Smad2 recognition by the Smad anchor for receptor activation.
    Wu G; Chen YG; Ozdamar B; Gyuricza CA; Chong PA; Wrana JL; Massagué J; Shi Y
    Science; 2000 Jan; 287(5450):92-7. PubMed ID: 10615055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of heteromeric smad protein assembly in TGF-beta signaling.
    Chacko BM; Qin BY; Tiwari A; Shi G; Lam S; Hayward LJ; De Caestecker M; Lin K
    Mol Cell; 2004 Sep; 15(5):813-23. PubMed ID: 15350224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bone morphogenetic protein 2 signaling mediator Smad1 participates predominantly in osteogenic and not in chondrogenic differentiation in mesenchymal progenitors C3H10T1/2.
    Ju W; Hoffmann A; Verschueren K; Tylzanowski P; Kaps C; Gross G; Huylebroeck D
    J Bone Miner Res; 2000 Oct; 15(10):1889-99. PubMed ID: 11028440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability.
    Williams TM; Williams ME; Heaton JH; Gelehrter TD; Innis JW
    Nucleic Acids Res; 2005; 33(14):4475-84. PubMed ID: 16087734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative assembly of Co-Smad4 MH1 with R-Smad1/3 MH1 on DNA: a molecular dynamics simulation study.
    Wang G; Li C; Wang Y; Chen G
    PLoS One; 2013; 8(1):e53841. PubMed ID: 23326519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a bone morphogenetic protein-responsive Smad-binding element.
    Kusanagi K; Inoue H; Ishidou Y; Mishima HK; Kawabata M; Miyazono K
    Mol Biol Cell; 2000 Feb; 11(2):555-65. PubMed ID: 10679014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction.
    Kuang C; Chen Y
    Oncogene; 2004 Feb; 23(5):1021-9. PubMed ID: 14647410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The TGF beta receptor activation process: an inhibitor- to substrate-binding switch.
    Huse M; Muir TW; Xu L; Chen YG; Kuriyan J; Massagué J
    Mol Cell; 2001 Sep; 8(3):671-82. PubMed ID: 11583628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control.
    Qin BY; Lam SS; Correia JJ; Lin K
    Genes Dev; 2002 Aug; 16(15):1950-63. PubMed ID: 12154125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the DNA-binding property of Smad5.
    Li W; Chen F; Nagarajan RP; Liu X; Chen Y
    Biochem Biophys Res Commun; 2001 Sep; 286(5):1163-9. PubMed ID: 11527422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the amino-terminal protein interaction domain of STAT-4.
    Vinkemeier U; Moarefi I; Darnell JE; Kuriyan J
    Science; 1998 Feb; 279(5353):1048-52. PubMed ID: 9461439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4.
    Jones JB; Kern SE
    Nucleic Acids Res; 2000 Jun; 28(12):2363-8. PubMed ID: 10871368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.