These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 11779648)
1. Mechanical conditions in the internal stabilization of proximal tibial defects. Duda GN; Mandruzzato F; Heller M; Kassi JP; Khodadadyan C; Haas NP Clin Biomech (Bristol, Avon); 2002 Jan; 17(1):64-72. PubMed ID: 11779648 [TBL] [Abstract][Full Text] [Related]
2. Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis. Pauchard Y; Ivanov TG; McErlain DD; Milner JS; Giffin JR; Birmingham TB; Holdsworth DW J Biomech Eng; 2015 Mar; 137(3):. PubMed ID: 25363041 [TBL] [Abstract][Full Text] [Related]
3. Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing. Duda GN; Mandruzzato F; Heller M; Goldhahn J; Moser R; Hehli M; Claes L; Haas NP J Biomech; 2001 May; 34(5):639-50. PubMed ID: 11311705 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled? Stoffel K; Dieter U; Stachowiak G; Gächter A; Kuster MS Injury; 2003 Nov; 34 Suppl 2():B11-9. PubMed ID: 14580982 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of stresses occurring on three different zirconia dental implants: three-dimensional finite element analysis. Caglar A; Bal BT; Aydin C; Yilmaz H; Ozkan S Int J Oral Maxillofac Implants; 2010; 25(1):95-103. PubMed ID: 20209191 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical investigation of the type and configuration of screws used in high tibial osteotomy with titanium locking plate and screw fixation. Chen YN; Chang CW; Li CT; Chen CH; Chung CR; Chang CH; Peng YT J Orthop Surg Res; 2019 Jan; 14(1):35. PubMed ID: 30691494 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical comparison of two alternative tibial plateau leveling osteotomy plates with the original standard in an axially loaded gap model: an in vitro study. Kloc PA; Kowaleski MP; Litsky AS; Brown NO; Johnson KA Vet Surg; 2009 Jan; 38(1):40-8. PubMed ID: 19152616 [TBL] [Abstract][Full Text] [Related]
8. Straining of the intact and fractured proximal humerus under physiological-like loading. Maldonado ZM; Seebeck J; Heller MO; Brandt D; Hepp P; Lill H; Duda GN J Biomech; 2003 Dec; 36(12):1865-73. PubMed ID: 14614940 [TBL] [Abstract][Full Text] [Related]
9. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis. Yang H; Butz KD; Duffy D; Niebur GL; Nauman EA; Main RP Bone; 2014 Sep; 66():131-9. PubMed ID: 24925445 [TBL] [Abstract][Full Text] [Related]
10. The influence of tibial component malalignment on bone strain in revision total knee replacement. Rastetter BR; Wright SJ; Gheduzzi S; Miles AW; Clift SE Proc Inst Mech Eng H; 2016 Jun; 230(6):561-8. PubMed ID: 27006420 [TBL] [Abstract][Full Text] [Related]
11. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study. Perillo-Marcone A; Taylor M J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092 [TBL] [Abstract][Full Text] [Related]
12. Validation of a finite element model of a unilateral external fixator in a rabbit tibia defect model. Karunratanakul K; Kerckhofs G; Lammens J; Vanlauwe J; Schrooten J; Van Oosterwyck H Med Eng Phys; 2013 Jul; 35(7):1037-43. PubMed ID: 23107490 [TBL] [Abstract][Full Text] [Related]
13. Surgical and morphological factors that affect internal mechanical loads in soft tissues of the transtibial residuum. Portnoy S; Siev-Ner I; Yizhar Z; Kristal A; Shabshin N; Gefen A Ann Biomed Eng; 2009 Dec; 37(12):2583-605. PubMed ID: 19768545 [TBL] [Abstract][Full Text] [Related]
14. Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses. Chao CK; Hsu CC; Wang JL; Lin J Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):59-66. PubMed ID: 16959388 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical effect of the configuration of screw hole style on locking plate fixation in proximal humerus fracture with a simulated gap: A finite element analysis. Zhang YK; Wei HW; Lin KP; Chen WC; Tsai CL; Lin KJ Injury; 2016 Jun; 47(6):1191-5. PubMed ID: 26975793 [TBL] [Abstract][Full Text] [Related]
16. Utility of cement injection to stabilize split-depression tibial plateau fracture by minimally invasive methods: A finite element analysis. Belaid D; Vendeuvre T; Bouchoucha A; Brémand F; Brèque C; Rigoard P; Germaneau A Clin Biomech (Bristol, Avon); 2018 Jul; 56():27-35. PubMed ID: 29777960 [TBL] [Abstract][Full Text] [Related]
17. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship. Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD Clin Biomech (Bristol, Avon); 2015 Aug; 30(7):703-12. PubMed ID: 26024555 [TBL] [Abstract][Full Text] [Related]
18. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking. Xu C; Silder A; Zhang J; Hughes J; Unnikrishnan G; Reifman J; Rakesh V J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27437640 [TBL] [Abstract][Full Text] [Related]
19. Experimental validation of a finite element model of a human cadaveric tibia. Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865 [TBL] [Abstract][Full Text] [Related]
20. Development and experimental validation of a finite element model of total ankle replacement. Terrier A; Larrea X; Guerdat J; Crevoisier X J Biomech; 2014 Feb; 47(3):742-5. PubMed ID: 24393809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]