These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Pevzner P; Tesler G Genome Res; 2003 Jan; 13(1):37-45. PubMed ID: 12529304 [TBL] [Abstract][Full Text] [Related]
6. Reconstruction of ancestral gene orders using intermediate genomes. Feijão P BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S3. PubMed ID: 26451811 [TBL] [Abstract][Full Text] [Related]
7. GRSR: a tool for deriving genome rearrangement scenarios from multiple unichromosomal genome sequences. Wang D; Wang L BMC Bioinformatics; 2018 Aug; 19(Suppl 9):291. PubMed ID: 30367596 [TBL] [Abstract][Full Text] [Related]
8. A new genomic evolutionary model for rearrangements, duplications, and losses that applies across eukaryotes and prokaryotes. Lin Y; Moret BM J Comput Biol; 2011 Sep; 18(9):1055-64. PubMed ID: 21899415 [TBL] [Abstract][Full Text] [Related]
9. A fast algorithm for the multiple genome rearrangement problem with weighted reversals and transpositions. Bader M; Abouelhoda MI; Ohlebusch E BMC Bioinformatics; 2008 Dec; 9():516. PubMed ID: 19055792 [TBL] [Abstract][Full Text] [Related]
10. Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes. Alekseyev MA J Comput Biol; 2008 Oct; 15(8):1117-31. PubMed ID: 18788907 [TBL] [Abstract][Full Text] [Related]
12. Fast ancestral gene order reconstruction of genomes with unequal gene content. Feijão P; Araujo E BMC Bioinformatics; 2016 Nov; 17(Suppl 14):413. PubMed ID: 28185578 [TBL] [Abstract][Full Text] [Related]
13. Sorting Signed Permutations by Inverse Tandem Duplication Random Losses. Hartmann T; Bannach M; Middendorf M IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2177-2188. PubMed ID: 31095495 [TBL] [Abstract][Full Text] [Related]
15. On the distribution of cycles and paths in multichromosomal breakpoint graphs and the expected value of rearrangement distance. Feijão P; Martinez F; Thévenin A BMC Bioinformatics; 2015; 16 Suppl 19(Suppl 19):S1. PubMed ID: 26695008 [TBL] [Abstract][Full Text] [Related]
16. SoRT2: a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations. Huang YL; Huang CC; Tang CY; Lu CL Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W221-7. PubMed ID: 20538651 [TBL] [Abstract][Full Text] [Related]
17. Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Bourque G; Zdobnov EM; Bork P; Pevzner PA; Tesler G Genome Res; 2005 Jan; 15(1):98-110. PubMed ID: 15590940 [TBL] [Abstract][Full Text] [Related]
18. Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes. Bhatia S; Egri-Nagy A; Francis AR J Math Biol; 2015 Nov; 71(5):1149-78. PubMed ID: 25502846 [TBL] [Abstract][Full Text] [Related]
19. Genome Rearrangement Analysis: Cut and Join Genome Rearrangements and Gene Cluster Preserving Approaches. Hartmann T; Middendorf M; Bernt M Methods Mol Biol; 2018; 1704():261-289. PubMed ID: 29277869 [TBL] [Abstract][Full Text] [Related]
20. Reconstructing contiguous regions of an ancestral genome. Ma J; Zhang L; Suh BB; Raney BJ; Burhans RC; Kent WJ; Blanchette M; Haussler D; Miller W Genome Res; 2006 Dec; 16(12):1557-65. PubMed ID: 16983148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]