These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

789 related articles for article (PubMed ID: 11780112)

  • 1. The cosmological density of baryons from observations of 3He+ in the Milky Way.
    Bania TM; Rood RT; Balser DS
    Nature; 2002 Jan; 415(6867):54-7. PubMed ID: 11780112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A probable stellar solution to the cosmological lithium discrepancy.
    Korn AJ; Grundahl F; Richard O; Barklem PS; Mashonkina L; Collet R; Piskunov N; Gustafsson B
    Nature; 2006 Aug; 442(7103):657-9. PubMed ID: 16900193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57.
    Tytler D; Fan XM; Burles S
    Nature; 1996 May; 381(6579):207-9. PubMed ID: 8622761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.
    Eggleton PP; Dearborn DS; Lattanzio JC
    Science; 2006 Dec; 314(5805):1580-3. PubMed ID: 17068226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comment on "Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis".
    Balser DS; Rood RT; Bania TM
    Science; 2007 Aug; 317(5842):1170. PubMed ID: 17761865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high deuterium abundance in the early Universe.
    Songaila A; Wampler EJ; Cowie LL
    Nature; 1997 Jan; 385(6612):137-9. PubMed ID: 8990115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges to the standard model of Big Bang nucleosynthesis.
    Steigman G
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4779-81. PubMed ID: 11607386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stellar relic from the early Milky Way.
    Christlieb N; Bessell MS; Beers TC; Gustafsson B; Korn A; Barklem PS; Karlsson T; Mizuno-Wiedner M; Rossi S
    Nature; 2002 Oct; 419(6910):904-6. PubMed ID: 12410304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newly synthesized lithium in the interstellar medium.
    Knauth DC; Federman SR; Lambert DL; Crane P
    Nature; 2000 Jun; 405(6787):656-8. PubMed ID: 10864316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cosmological element production.
    Wagoner RV
    Science; 1967 Mar; 155(3768):1369-76. PubMed ID: 17839602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deuterium in the Galactic Centre as a result of recent infall of low-metallicity gas.
    Lubowich DA; Pasachoff JM; Balonek TJ; Millar TJ; Tremonti C; Roberts H; Galloway RP
    Nature; 2000 Jun; 405(6790):1025-7. PubMed ID: 10890436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genesis of the heaviest elements in the Milky Way Galaxy.
    Sneden C; Cowan JJ
    Science; 2003 Jan; 299(5603):70-5. PubMed ID: 12511642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cosmological implications of light element abundances: theory.
    Schramm DN
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):4782-8. PubMed ID: 11607387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud.
    Howk JC; Lehner N; Fields BD; Mathews GJ
    Nature; 2012 Sep; 489(7414):121-3. PubMed ID: 22955622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of three lead-rich stars.
    Van Eck S; Goriely S; Jorissen A; Plez B
    Nature; 2001 Aug; 412(6849):793-5. PubMed ID: 11518958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosynthetic signatures of the first stars.
    Frebel A; Aoki W; Christlieb N; Ando H; Asplund M; Barklem PS; Beers TC; Eriksson K; Fechner C; Fujimoto MY; Honda S; Kajino T; Minezaki T; Nomoto K; Norris JE; Ryan SG; Takada-Hidai M; Tsangarides S; Yoshii Y
    Nature; 2005 Apr; 434(7035):871-3. PubMed ID: 15829957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primordial nucleosynthesis.
    Schramm DN
    Proc Natl Acad Sci U S A; 1998 Jan; 95(1):42-6. PubMed ID: 9419322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars.
    Dauphas N
    Nature; 2005 Jun; 435(7046):1203-5. PubMed ID: 15988518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of the first low-mass stars from gas with low carbon and oxygen abundances.
    Bromm V; Loeb A
    Nature; 2003 Oct; 425(6960):812-4. PubMed ID: 14574405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accretion of low-metallicity gas by the Milky Way.
    Wakker BP; Howk JC; Savage BD; van Woerden H; Tufte SL; Schwarz UJ; Benjamin R; Reynolds RJ; Peletier RF; Kalberla PM
    Nature; 1999 Nov; 402(6760):388-90. PubMed ID: 10586877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.