These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11781002)

  • 21. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints.
    Muir P; McCarthy J; Radtke CL; Markel MD; Santschi EM; Scollay MC; Kalscheur VL
    Bone; 2006 Mar; 38(3):342-9. PubMed ID: 16275175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes.
    Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P
    Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gross, histological and histomorphometric features of the navicular bone and related structures in the horse.
    Wright IM; Kidd L; Thorp BH
    Equine Vet J; 1998 May; 30(3):220-34. PubMed ID: 9622323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of racetrack exercise on third metacarpal and carpal bone of New Zealand thoroughbred horses.
    Firth EC; Rogers CW; Jopson N
    J Musculoskelet Neuronal Interact; 2000 Dec; 1(2):145-7. PubMed ID: 15758509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative evaluation of the remodeling response of the proximal sesamoid bones to training-related stimuli in Thoroughbreds.
    Young DR; Nunamaker DM; Markel MD
    Am J Vet Res; 1991 Aug; 52(8):1350-6. PubMed ID: 1928920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High resolution microscopic survey of third metacarpal articular calcified cartilage and subchondral bone in the juvenile horse: possible implications in chondro-osseous disease.
    Boyde A; Firth EC
    Microsc Res Tech; 2008 Jun; 71(6):477-88. PubMed ID: 18320577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subchondral bone failure in overload arthrosis: a scanning electron microscopic study in horses.
    Norrdin RW; Stover SM
    J Musculoskelet Neuronal Interact; 2006; 6(3):251-7. PubMed ID: 17142946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats.
    Reed AH; McCarty HL; Evans GL; Turner RT; Westerlind KC
    Alcohol Clin Exp Res; 2002 Aug; 26(8):1269-74. PubMed ID: 12198404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Musculoskeletal responses of 2-year-old Thoroughbred horses to early training. Conclusions.
    Firth EC; Rogers CW
    N Z Vet J; 2005 Dec; 53(6):377-83. PubMed ID: 16317437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Equine carpal articular cartilage fibronectin distribution associated with training, joint location and cartilage deterioration.
    Murray RC; Janicke HC; Henson FM; Goodship A
    Equine Vet J; 2000 Jan; 32(1):47-51. PubMed ID: 10661385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fractures--a preventable hazard of racing thoroughbreds?
    Riggs CM
    Vet J; 2002 Jan; 163(1):19-29. PubMed ID: 11749133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphometrical variations of the carpal bones in thoroughbreds and ponies.
    Abdunnabi AH; Ahmed YA; Philip CJ; Davies HM
    Anat Histol Embryol; 2012 Apr; 41(2):139-48. PubMed ID: 22010993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subchondral and trabecular bone remodeling in canine experimental osteoarthritis.
    Lahm A; Kreuz PC; Oberst M; Haberstroh J; Uhl M; Maier D
    Arch Orthop Trauma Surg; 2006 Nov; 126(9):582-7. PubMed ID: 16331520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validation of magnetic resonance imaging for measurement of equine articular cartilage and subchondral bone thickness.
    Murray RC; Branch MV; Tranquille C; Woods S
    Am J Vet Res; 2005 Nov; 66(11):1999-2005. PubMed ID: 16334962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of exercise on the composition of developing equine joints.
    van de Lest CH; Brama PA; Van Weeren PR
    Biorheology; 2002; 39(1-2):183-91. PubMed ID: 12082281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does subchondral bone of the equine proximal phalanx adapt to race training?
    Noble P; Singer ER; Jeffery NS
    J Anat; 2016 Jul; 229(1):104-13. PubMed ID: 27075139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Galloping exercise induces regional changes in bone density within the third and radial carpal bones of Thoroughbred horses.
    Firth EC; Delahunt J; Wichtel JW; Birch HL; Goodship AE
    Equine Vet J; 1999 Mar; 31(2):111-5. PubMed ID: 10213422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histopathologic features of distal tarsal joint cartilage and subchondral bone in ridden and pasture-exercised horses.
    Tranquille CA; Dyson SJ; Blunden AS; Collins SN; Parkin TD; Goodship AE; Murray RC
    Am J Vet Res; 2011 Jan; 72(1):33-41. PubMed ID: 21194333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exercise of young thoroughbred horses increases impact strength of the third metacarpal bone.
    Reilly GC; Currey JD; Goodship AE
    J Orthop Res; 1997 Nov; 15(6):862-8. PubMed ID: 9497811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple pathways to osteoarthritis and articular fractures: is subchondral bone the culprit?
    Cruz AM; Hurtig MB
    Vet Clin North Am Equine Pract; 2008 Apr; 24(1):101-16. PubMed ID: 18314038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.