These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11781003)

  • 1. Tensile properties of the physis vary with anatomic location, thickness, strain rate and age.
    Williams JL; Do PD; Eick JD; Schmidt TL
    J Orthop Res; 2001 Nov; 19(6):1043-8. PubMed ID: 11781003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The microstructural tensile properties and biochemical composition of the bovine distal femoral growth plate.
    Cohen B; Chorney GS; Phillips DP; Dick HM; Buckwalter JA; Ratcliffe A; Mow VC
    J Orthop Res; 1992 Mar; 10(2):263-75. PubMed ID: 1740744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear strength of the physis varies with anatomic location and is a function of modulus, inclination, and thickness.
    Williams JL; Vani JN; Eick JD; Petersen EC; Schmidt TL
    J Orthop Res; 1999 Mar; 17(2):214-22. PubMed ID: 10221838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zonal and directional variations in tensile properties of bovine articular cartilage with special reference to strain rate variation.
    Verteramo A; Seedhom BB
    Biorheology; 2004; 41(3-4):203-13. PubMed ID: 15299253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radial tie fibers influence the tensile properties of the bovine medial meniscus.
    Skaggs DL; Warden WH; Mow VC
    J Orthop Res; 1994 Mar; 12(2):176-85. PubMed ID: 8164089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical behavior of the lamb growth plate in response to asymmetrical loading: a model for Blount disease.
    Grover JP; Vanderby R; Leiferman EM; Wilsman NJ; Noonan KJ
    J Pediatr Orthop; 2007; 27(5):485-92. PubMed ID: 17585254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aging on tensile mechanical properties of the rabbit distal femoral growth plate.
    Guse RJ; Connolly JF; Alberts R; Lippiello L
    J Orthop Res; 1989; 7(5):667-73. PubMed ID: 2760738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of callus distraction on the growth plate.
    Fink B; Ostermeyer K; Singer J; Hahn M; Sager M; Enderle A; Delling G
    Arch Orthop Trauma Surg; 2007 Aug; 127(6):417-23. PubMed ID: 17598117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical comparison of polyaxial and uniaxial locking plate fixation in a proximal tibial gap model.
    Cullen AB; Curtiss S; Lee MA
    J Orthop Trauma; 2009 Aug; 23(7):507-13. PubMed ID: 19633460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physeal fractures, part I: histologic features of bone, cartilage, and bar formation in a small animal model.
    Wattenbarger JM; Gruber HE; Phieffer LS
    J Pediatr Orthop; 2002; 22(6):703-9. PubMed ID: 12409892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondrocyte apoptosis enhanced at the growth plate: a physeal response to a diaphyseal fracture.
    Gaber S; Fischerauer EE; Fröhlich E; Janezic G; Amerstorfer F; Weinberg AM
    Cell Tissue Res; 2009 Mar; 335(3):539-49. PubMed ID: 19089454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tensile biomechanical properties of human nasal septal cartilage.
    Richmon JD; Sage AB; Wong VW; Chen AC; Pan C; Sah RL; Watson D
    Am J Rhinol; 2005; 19(6):617-22. PubMed ID: 16402652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material properties of the normal medial bovine meniscus.
    Proctor CS; Schmidt MB; Whipple RR; Kelly MA; Mow VC
    J Orthop Res; 1989; 7(6):771-82. PubMed ID: 2677284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physeal fractures, part II: fate of interposed periosteum in a physeal fracture.
    Gruber HE; Phieffer LS; Wattenbarger JM
    J Pediatr Orthop; 2002; 22(6):710-6. PubMed ID: 12409893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-uniform strain distribution within rat cartilaginous growth plate under uniaxial compression.
    Villemure I; Cloutier L; Matyas JR; Duncan NA
    J Biomech; 2007; 40(1):149-56. PubMed ID: 16378613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of strain rate on tensile properties of sheep disc anulus fibrosus.
    Kasra M; Parnianpour M; Shirazi-Adl A; Wang JL; Grynpas MD
    Technol Health Care; 2004; 12(4):333-42. PubMed ID: 15502284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components.
    Williamson AK; Chen AC; Masuda K; Thonar EJ; Sah RL
    J Orthop Res; 2003 Sep; 21(5):872-80. PubMed ID: 12919876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive stress-relaxation behavior of bovine growth plate may be described by the nonlinear biphasic theory.
    Cohen B; Chorney GS; Phillips DP; Dick HM; Mow VC
    J Orthop Res; 1994 Nov; 12(6):804-13. PubMed ID: 7983556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics.
    Wilsman NJ; Farnum CE; Leiferman EM; Fry M; Barreto C
    J Orthop Res; 1996 Nov; 14(6):927-36. PubMed ID: 8982136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The material properties of the bovine acetabular labrum.
    Ferguson SJ; Bryant JT; Ito K
    J Orthop Res; 2001 Sep; 19(5):887-96. PubMed ID: 11562138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.