BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 11781082)

  • 21. Absence of lutein, violaxanthin and neoxanthin affects the functional chlorophyll antenna size of photosystem-II but not that of photosystem-I in the green alga Chlamydomonas reinhardtii.
    Polle JE; Niyogi KK; Melis A
    Plant Cell Physiol; 2001 May; 42(5):482-91. PubMed ID: 11382814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis.
    Johnson MP; Pérez-Bueno ML; Zia A; Horton P; Ruban AV
    Plant Physiol; 2009 Feb; 149(2):1061-75. PubMed ID: 19011000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes - a theoretical perspective.
    Wormit M; Harbach PH; Mewes JM; Amarie S; Wachtveitl J; Dreuw A
    Biochim Biophys Acta; 2009 Jun; 1787(6):738-46. PubMed ID: 19366605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence.
    Young AJ; Frank HA
    J Photochem Photobiol B; 1996 Oct; 36(1):3-15. PubMed ID: 8988608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular factors controlling photosynthetic light harvesting by carotenoids.
    Polívka T; Frank HA
    Acc Chem Res; 2010 Aug; 43(8):1125-34. PubMed ID: 20446691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of zeaxanthin and its radical cation bound to the minor light-harvesting complexes CP24, CP26 and CP29.
    Amarie S; Wilk L; Barros T; Kühlbrandt W; Dreuw A; Wachtveitl J
    Biochim Biophys Acta; 2009 Jun; 1787(6):747-52. PubMed ID: 19248759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet-Triplet Energy Transfer.
    Carbonera D; Agostini A; Bortolus M; Dall'Osto L; Bassi R
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26.
    Dall'Osto L; Caffarri S; Bassi R
    Plant Cell; 2005 Apr; 17(4):1217-32. PubMed ID: 15749754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel amplification of non-photochemical chlorophyll fluorescence quenching following viral infection in Chlorella.
    Seaton GG; Hurry VM; Rohozinski J
    FEBS Lett; 1996 Jul; 389(3):319-23. PubMed ID: 8766724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition.
    Saccon F; Durchan M; Kaňa R; Prášil O; Ruban AV; Polívka T
    J Phys Chem B; 2019 Nov; 123(44):9312-9320. PubMed ID: 31599594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature-induced isomerization of violaxanthin in organic solvents and in light-harvesting complex II.
    Niedzwiedzki D; Krupa Z; Gruszecki WI
    J Photochem Photobiol B; 2005 Feb; 78(2):109-14. PubMed ID: 15664497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability.
    Lokstein H; Tian L; Polle JE; DellaPenna D
    Biochim Biophys Acta; 2002 Feb; 1553(3):309-19. PubMed ID: 11997140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I.
    Croce R; Mozzo M; Morosinotto T; Romeo A; Hienerwadel R; Bassi R
    Biochemistry; 2007 Mar; 46(12):3846-55. PubMed ID: 17326666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seasonal changes of violaxanthin cycle pigment de-epoxidation in wintergreen and evergreen plants.
    Dymova O; Golovko T
    Acta Biochim Pol; 2012; 59(1):143-4. PubMed ID: 22428127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carotenoids, versatile components of oxygenic photosynthesis.
    Domonkos I; Kis M; Gombos Z; Ughy B
    Prog Lipid Res; 2013 Oct; 52(4):539-61. PubMed ID: 23896007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The binding of Xanthophylls to the bulk light-harvesting complex of photosystem II of higher plants. A specific requirement for carotenoids with a 3-hydroxy-beta-end group.
    Phillip D; Hobe S; Paulsen H; Molnar P; Hashimoto H; Young AJ
    J Biol Chem; 2002 Jul; 277(28):25160-9. PubMed ID: 11991953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP.
    Gilmore AM; Yamamoto HY
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1899-903. PubMed ID: 1542689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection.
    Saccon F; Durchan M; Polívka T; Ruban AV
    Photochem Photobiol Sci; 2020 Oct; 19(10):1308-1318. PubMed ID: 32815966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carotenoid radical cations as a probe for the molecular mechanism of nonphotochemical quenching in oxygenic photosynthesis.
    Amarie S; Standfuss J; Barros T; Kühlbrandt W; Dreuw A; Wachtveitl J
    J Phys Chem B; 2007 Apr; 111(13):3481-7. PubMed ID: 17388511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin binding protein.
    Levy H; Tal T; Shaish A; Zamir A
    J Biol Chem; 1993 Oct; 268(28):20892-6. PubMed ID: 8407922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.