BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11781094)

  • 1. Unusual properties of plastocyanin from the fern Dryopteris crassirhizoma.
    Dennison C; Lawler AT; Kohzuma T
    Biochemistry; 2002 Jan; 41(2):552-60. PubMed ID: 11781094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-site structure and electron-transfer reactivity of plastocyanins.
    Sato K; Kohzuma T; Dennison C
    J Am Chem Soc; 2003 Feb; 125(8):2101-12. PubMed ID: 12590538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure and unusual pH dependence of plastocyanin from the fern Dryopteris crassirhizoma. The protonation of an active site histidine is hindered by pi-pi interactions.
    Kohzuma T; Inoue T; Yoshizaki F; Sasakawa Y; Onodera K; Nagatomo S; Kitagawa T; Uzawa S; Isobe Y; Sugimura Y; Gotowda M; Kai Y
    J Biol Chem; 1999 Apr; 274(17):11817-23. PubMed ID: 10206999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH on the self-exchange reactivity of the plant plastocyanin from parsley.
    Hunter DM; McFarlane W; Sykes AG; Dennison C
    Inorg Chem; 2001 Jan; 40(2):354-60. PubMed ID: 11170543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation of a histidine copper ligand in fern plastocyanin.
    Hulsker R; Mery A; Thomassen EA; Ranieri A; Sola M; Verbeet MP; Kohzuma T; Ubbink M
    J Am Chem Soc; 2007 Apr; 129(14):4423-9. PubMed ID: 17367139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The parsley plastocyanin-turnip cytochrome f complex: a structurally distorted but kinetically functional acidic patch.
    Crowley PB; Hunter DM; Sato K; McFarlane W; Dennison C
    Biochem J; 2004 Feb; 378(Pt 1):45-51. PubMed ID: 14585099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure comparison between oxidized and reduced plastocyanin from a fern, Dryopteris crassirhizoma.
    Inoue T; Gotowda M; Sugawara H; Kohzuma T; Yoshizaki F; Sugimura Y; Kai Y
    Biochemistry; 1999 Oct; 38(42):13853-61. PubMed ID: 10529231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudospecificity of the acidic patch of plastocyanin for the interaction with cytochrome f.
    Sato K; Kohzuma T; Dennison C
    J Am Chem Soc; 2004 Mar; 126(10):3028-9. PubMed ID: 15012114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient homodimer interactions studied using the electron self-exchange reaction.
    Sato K; Crowley PB; Dennison C
    J Biol Chem; 2005 May; 280(19):19281-8. PubMed ID: 15743773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of NO2-modification of Tyr83 on the reactivity of spinach plastocyanin with cytochrome f.
    Christensen HE; Conrad LS; Ulstrup J
    Biochim Biophys Acta; 1992 Jan; 1099(1):35-44. PubMed ID: 1739726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations.
    Hass MA; Thuesen MH; Christensen HE; Led JJ
    J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV Raman monitoring of histidine protonation and H-(2)H exchange in plastocyanin.
    Wu Q; Li F; Wang W; Hecht MH; Spiro TG
    J Inorg Biochem; 2002 Feb; 88(3-4):381-7. PubMed ID: 11897354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis.
    Badsberg U; Jørgensen AM; Gesmar H; Led JJ; Hammerstad JM; Jespersen LL; Ulstrup J
    Biochemistry; 1996 Jun; 35(22):7021-31. PubMed ID: 8679527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of NO2-modification of Tyr83 on the reactivity of spinach plastocyanin with inorganic redox partners [Fe(CN)6]3-/4- and [Co(phen)3]3+/2+.
    Christensen HE; Ulstrup J; Sykes AG
    Biochim Biophys Acta; 1990 May; 1039(1):94-102. PubMed ID: 2354205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pH on protein association: modification of the proton-linkage model and experimental verification of the modified model in the case of cytochrome c and plastocyanin.
    Crnogorac MM; Ullmann GM; Kostić NM
    J Am Chem Soc; 2001 Nov; 123(44):10789-98. PubMed ID: 11686679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum chemical calculation of type-1 cu reduction potential: ligand interaction and solvation effect.
    Si D; Li H
    J Phys Chem A; 2009 Nov; 113(46):12979-87. PubMed ID: 19810740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent structural change of reduced spinach plastocyanin studied by perturbed angular correlation of gamma-rays and dynamic light scattering.
    Sas KN; Haldrup A; Hemmingsen L; Danielsen E; Øgendal LH
    J Biol Inorg Chem; 2006 Jun; 11(4):409-18. PubMed ID: 16570184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transient complex of poplar plastocyanin with cytochrome f: effects of ionic strength and pH.
    Lange C; Cornvik T; Díaz-Moreno I; Ubbink M
    Biochim Biophys Acta; 2005; 1707(2-3):179-88. PubMed ID: 15863096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the near-ultraviolet absorption and circular dichroic spectra of parsley plastocyanin for the effects of pH and copper center conformation changes.
    Durell SR; Gross EL; Draheim JE
    Arch Biochem Biophys; 1988 Nov; 267(1):217-27. PubMed ID: 3058037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of the acid transition of the active site in plastocyanin.
    Hass MA; Christensen HE; Zhang J; Led JJ
    Biochemistry; 2007 Dec; 46(50):14619-28. PubMed ID: 18020375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.