BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11781108)

  • 1. Role of arginine 59 in the gamma-class carbonic anhydrases.
    Tripp BC; Tu C; Ferry JG
    Biochemistry; 2002 Jan; 41(2):669-78. PubMed ID: 11781108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structure-function study of a proton transport pathway in the gamma-class carbonic anhydrase from Methanosarcina thermophila.
    Tripp BC; Ferry JG
    Biochemistry; 2000 Aug; 39(31):9232-40. PubMed ID: 10924116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal beta-class carbonic anhydrase.
    Smith KS; Ingram-Smith C; Ferry JG
    J Bacteriol; 2002 Aug; 184(15):4240-5. PubMed ID: 12107142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and spectroscopic characterization of the gamma-carbonic anhydrase from the methanoarchaeon Methanosarcina thermophila.
    Alber BE; Colangelo CM; Dong J; Stålhandske CM; Baird TT; Tu C; Fierke CA; Silverman DN; Scott RA; Ferry JG
    Biochemistry; 1999 Oct; 38(40):13119-28. PubMed ID: 10529183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposal for a hydrogen bond network in the active site of the prototypic gamma-class carbonic anhydrase.
    Zimmerman SA; Ferry JG
    Biochemistry; 2006 Apr; 45(16):5149-57. PubMed ID: 16618104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of essential arginines in the acetate kinase from Methanosarcina thermophila.
    Singh-Wissmann K; Miles RD; Ingram-Smith C; Ferry JG
    Biochemistry; 2000 Apr; 39(13):3671-7. PubMed ID: 10736166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Trp19 and Tyr200 in catalysis by the γ-class carbonic anhydrase from Methanosarcina thermophila.
    Zimmerman S; Domsic JF; Tu C; Robbins AH; McKenna R; Silverman DN; Ferry JG
    Arch Biochem Biophys; 2013 Jan; 529(1):11-7. PubMed ID: 23111186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of CamH from Methanosarcina thermophila, founding member of a subclass of the {gamma} class of carbonic anhydrases.
    Zimmerman SA; Tomb JF; Ferry JG
    J Bacteriol; 2010 Mar; 192(5):1353-60. PubMed ID: 20023030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and kinetic characterization of an archaeal beta-class carbonic anhydrase.
    Smith KS; Cosper NJ; Stalhandske C; Scott RA; Ferry JG
    J Bacteriol; 2000 Dec; 182(23):6605-13. PubMed ID: 11073902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic study of catalytic CO(2) hydration by water-soluble model compound of carbonic anhydrase and anion inhibition effect on CO(2) hydration.
    Nakata K; Shimomura N; Shiina N; Izumi M; Ichikawa K; Shiro M
    J Inorg Biochem; 2002 Apr; 89(3-4):255-66. PubMed ID: 12062130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans.
    Yuan C; Kent C
    J Biol Chem; 2004 Apr; 279(17):17801-9. PubMed ID: 14960577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural basis for the perturbed pKa of the catalytic base in 4-oxalocrotonate tautomerase: kinetic and structural effects of mutations of Phe-50.
    Czerwinski RM; Harris TK; Massiah MA; Mildvan AS; Whitman CP
    Biochemistry; 2001 Feb; 40(7):1984-95. PubMed ID: 11329265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase.
    Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS
    Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and spectroscopic studies of hydrophilic amino acid substitutions in the hydrophobic pocket of human carbonic anhydrase II.
    Krebs JF; Rana F; Dluhy RA; Fierke CA
    Biochemistry; 1993 May; 32(17):4496-505. PubMed ID: 8485128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of carbonic anhydrase from Neisseria gonorrhoeae.
    Elleby B; Chirica LC; Tu C; Zeppezauer M; Lindskog S
    Eur J Biochem; 2001 Mar; 268(6):1613-9. PubMed ID: 11248679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc binding drives the folding and association of the homo-trimeric gamma-carbonic anhydrase from Methanosarcina thermophila.
    Simler BR; Doyle BL; Matthews CR
    Protein Eng Des Sel; 2004 Mar; 17(3):285-91. PubMed ID: 15051865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A closer look at the active site of gamma-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila.
    Iverson TM; Alber BE; Kisker C; Ferry JG; Rees DC
    Biochemistry; 2000 Aug; 39(31):9222-31. PubMed ID: 10924115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification by mutagenesis of arginines in the substrate binding site of the porcine NADP-dependent isocitrate dehydrogenase.
    Soundar S; Danek BL; Colman RF
    J Biol Chem; 2000 Feb; 275(8):5606-12. PubMed ID: 10681542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis.
    Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP
    Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.