BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11781109)

  • 1. Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in Mammalian tyrosinase. Implications to the catalytic cycle.
    Olivares C; García-Borrón JC; Solano F
    Biochemistry; 2002 Jan; 41(2):679-86. PubMed ID: 11781109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis.
    Nakamura M; Nakajima T; Ohba Y; Yamauchi S; Lee BR; Ichishima E
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center.
    García-Borrón JC; Solano F
    Pigment Cell Res; 2002 Jun; 15(3):162-73. PubMed ID: 12028580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities.
    Noh H; Lee SJ; Jo HJ; Choi HW; Hong S; Kong KH
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):726-732. PubMed ID: 32180482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins.
    Olivares C; Solano F
    Pigment Cell Melanoma Res; 2009 Dec; 22(6):750-60. PubMed ID: 19735457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins.
    Lai X; Wichers HJ; Soler-Lopez M; Dijkstra BW
    Chemistry; 2018 Jan; 24(1):47-55. PubMed ID: 29052256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.
    Hassan M; Abbas Q; Raza H; Moustafa AA; Seo SY
    Mol Biosyst; 2017 Jul; 13(8):1534-1544. PubMed ID: 28640309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations.
    Schweikardt T; Olivares C; Solano F; Jaenicke E; García-Borrón JC; Decker H
    Pigment Cell Res; 2007 Oct; 20(5):394-401. PubMed ID: 17850513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
    Matoba Y; Kumagai T; Yamamoto A; Yoshitsu H; Sugiyama M
    J Biol Chem; 2006 Mar; 281(13):8981-90. PubMed ID: 16436386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio.
    Hernández-Romero D; Sanchez-Amat A; Solano F
    FEBS J; 2006 Jan; 273(2):257-70. PubMed ID: 16403014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial tyrosinases.
    Claus H; Decker H
    Syst Appl Microbiol; 2006 Jan; 29(1):3-14. PubMed ID: 16423650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.
    Ismaya WT; Rozeboom HJ; Weijn A; Mes JJ; Fusetti F; Wichers HJ; Dijkstra BW
    Biochemistry; 2011 Jun; 50(24):5477-86. PubMed ID: 21598903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase.
    Olivares C; Jiménez-Cervantes C; Lozano JA; Solano F; García-Borrón JC
    Biochem J; 2001 Feb; 354(Pt 1):131-9. PubMed ID: 11171088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: insights into endogenous cysteine-dependent copper incorporation.
    Fujieda N; Yabuta S; Ikeda T; Oyama T; Muraki N; Kurisu G; Itoh S
    J Biol Chem; 2013 Jul; 288(30):22128-40. PubMed ID: 23749993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of copper binding by human tyrosinase.
    Spritz RA; Ho L; Furumura M; Hearing VJ
    J Invest Dermatol; 1997 Aug; 109(2):207-12. PubMed ID: 9242509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of the oxy form of tyrosinase by a single conservative amino acid substitution.
    Jackman MP; Huber M; Hajnal A; Lerch K
    Biochem J; 1992 Mar; 282 ( Pt 3)(Pt 3):915-8. PubMed ID: 1348173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins.
    Goldfeder M; Kanteev M; Isaschar-Ovdat S; Adir N; Fishman A
    Nat Commun; 2014 Jul; 5():4505. PubMed ID: 25074014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation-dependent post-translational glycosylation of tyrosinase. Requirement of a specific interaction involving the CuB metal binding site.
    Olivares C; Solano F; García-Borrón JC
    J Biol Chem; 2003 May; 278(18):15735-43. PubMed ID: 12595535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similar enzyme activation and catalysis in hemocyanins and tyrosinases.
    Decker H; Schweikardt T; Nillius D; Salzbrunn U; Jaenicke E; Tuczek F
    Gene; 2007 Aug; 398(1-2):183-91. PubMed ID: 17566671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-Oxygen Dynamics in the Tyrosinase Mechanism.
    Fujieda N; Umakoshi K; Ochi Y; Nishikawa Y; Yanagisawa S; Kubo M; Kurisu G; Itoh S
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13385-13390. PubMed ID: 32356371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.