BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11781497)

  • 21. Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse.
    Buvoli M; Buvoli A; Leinwand LA
    PLoS One; 2007 May; 2(5):e427. PubMed ID: 17487273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Comparison and analysis of the molecular character of breakpoints in introns of deletion hotspots of dystrophin gene].
    Sheng WL; Chen JY; Pan SY; Zhang C; Liu ZL
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2003 Oct; 20(5):376-80. PubMed ID: 14556187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel cryptic exon in intron 3 of the dystrophin gene was incorporated into dystrophin mRNA with a single nucleotide deletion in exon 5.
    Suminaga R; Takeshima Y; Adachi K; Yagi M; Nakamura H; Matsuo M
    J Hum Genet; 2002; 47(4):196-201. PubMed ID: 12166656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1.
    Zatkova A; Messiaen L; Vandenbroucke I; Wieser R; Fonatsch C; Krainer AR; Wimmer K
    Hum Mutat; 2004 Dec; 24(6):491-501. PubMed ID: 15523642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D.
    Caputi M; Zahler AM
    EMBO J; 2002 Feb; 21(4):845-55. PubMed ID: 11847131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The strength of the HIV-1 3' splice sites affects Rev function.
    Kammler S; Otte M; Hauber I; Kjems J; Hauber J; Schaal H
    Retrovirology; 2006 Dec; 3():89. PubMed ID: 17144911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antisense modulation of both exonic and intronic splicing motifs induces skipping of a DMD pseudo-exon responsible for x-linked dilated cardiomyopathy.
    Rimessi P; Fabris M; Bovolenta M; Bassi E; Falzarano S; Gualandi F; Rapezzi C; Coccolo F; Perrone D; Medici A; Ferlini A
    Hum Gene Ther; 2010 Sep; 21(9):1137-46. PubMed ID: 20486769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional conservation of the Drosophila doublesex splicing enhancer repeat elements.
    Hertel KJ; Lynch KW; Hsiao EC; Liu EH; Maniatis T
    RNA; 1996 Oct; 2(10):969-81. PubMed ID: 8849774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An intron splicing enhancer containing a G-rich repeat facilitates inclusion of a vertebrate micro-exon.
    Carlo T; Sterner DA; Berget SM
    RNA; 1996 Apr; 2(4):342-53. PubMed ID: 8634915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of 2'-O-Me RNA/ENA chimera oligonucleotides to induce exon skipping in dystrophin pre-mRNA.
    Takagi M; Yagi M; Ishibashi K; Takeshima Y; Surono A; Matsuo M; Koizumi M
    Nucleic Acids Symp Ser (Oxf); 2004; (48):297-8. PubMed ID: 17150596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulated splicing of an alternative exon of beta-tropomyosin pre-mRNAs in myogenic cells depends on the strength of pyrimidine-rich intronic enhancer elements.
    Pret AM; Balvay L; Fiszman MY
    DNA Cell Biol; 1999 Sep; 18(9):671-83. PubMed ID: 10492398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment.
    Davis RL; Homer VM; George PM; Brennan SO
    Hum Mutat; 2009 Feb; 30(2):221-7. PubMed ID: 18853456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The function of multisite splicing enhancers.
    Hertel KJ; Maniatis T
    Mol Cell; 1998 Feb; 1(3):449-55. PubMed ID: 9660929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori.
    Suzuki MG; Ohbayashi F; Mita K; Shimada T
    Insect Biochem Mol Biol; 2001 Nov; 31(12):1201-11. PubMed ID: 11583933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a new class of exonic splicing enhancers by in vivo selection.
    Coulter LR; Landree MA; Cooper TA
    Mol Cell Biol; 1997 Apr; 17(4):2143-50. PubMed ID: 9121463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two alternative exons can result from activation of the cryptic splice acceptor site deep within intron 2 of the dystrophin gene in a patient with as yet asymptomatic dystrophinopathy.
    Yagi M; Takeshima Y; Wada H; Nakamura H; Matsuo M
    Hum Genet; 2003 Feb; 112(2):164-70. PubMed ID: 12522557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polypurine sequences within a downstream exon function as a splicing enhancer.
    Tanaka K; Watakabe A; Shimura Y
    Mol Cell Biol; 1994 Feb; 14(2):1347-54. PubMed ID: 8289812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silencer elements as possible inhibitors of pseudoexon splicing.
    Sironi M; Menozzi G; Riva L; Cagliani R; Comi GP; Bresolin N; Giorda R; Pozzoli U
    Nucleic Acids Res; 2004; 32(5):1783-91. PubMed ID: 15034146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression.
    Lei H; Vorechovsky I
    Mol Cell Biol; 2005 Aug; 25(16):6912-20. PubMed ID: 16055705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers.
    Ibrahim EC; Schaal TD; Hertel KJ; Reed R; Maniatis T
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5002-7. PubMed ID: 15753297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.