These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 11781801)

  • 1. Abundant Species Diversity and Essential Functions of Bacterial Communities Associated with Dinoflagellates as Revealed from Metabarcoding Sequencing for Laboratory-Raised Clonal Cultures.
    Deng Y; Wang K; Hu Z; Tang YZ
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a plasmid-based expression system in
    Hon S; Lanahan AA; Tian L; Giannone RJ; Hettich RL; Olson DG; Lynd LR
    Metab Eng Commun; 2016 Dec; 3():120-129. PubMed ID: 29142822
    [No Abstract]   [Full Text] [Related]  

  • 3. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring.
    Singh N; Mathur AS; Tuli DK; Gupta RP; Barrow CJ; Puri M
    Biotechnol Biofuels; 2017; 10():73. PubMed ID: 28344648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking the cellulolytic activity of Clostridium thermocellum biofilms.
    Dumitrache A; Wolfaardt GM; Allen DG; Liss SN; Lynd LR
    Biotechnol Biofuels; 2013 Nov; 6(1):175. PubMed ID: 24286524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum.
    Linville JL; Rodriguez M; Land M; Syed MH; Engle NL; Tschaplinski TJ; Mielenz JR; Cox CD
    PLoS One; 2013; 8(10):e78829. PubMed ID: 24205326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach.
    Yee KL; Rodriguez M; Tschaplinski TJ; Engle NL; Martin MZ; Fu C; Wang ZY; Hamilton-Brehm SD; Mielenz JR
    Biotechnol Biofuels; 2012 Nov; 5(1):81. PubMed ID: 23146305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Form and function of Clostridium thermocellum biofilms.
    Dumitrache A; Wolfaardt G; Allen G; Liss SN; Lynd LR
    Appl Environ Microbiol; 2013 Jan; 79(1):231-9. PubMed ID: 23087042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity.
    Maki ML; Armstrong L; Leung KT; Qin W
    Bioengineered; 2013; 4(1):15-20. PubMed ID: 22922214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A defined growth medium with very low background carbon for culturing Clostridium thermocellum.
    Holwerda EK; Hirst KD; Lynd LR
    J Ind Microbiol Biotechnol; 2012 Jun; 39(6):943-7. PubMed ID: 22350066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.
    Sizova MV; Izquierdo JA; Panikov NS; Lynd LR
    Appl Environ Microbiol; 2011 Apr; 77(7):2282-91. PubMed ID: 21317267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and quantification of functional genes of cellulose- degrading, fermentative, and sulfate-reducing bacteria and methanogenic archaea.
    Pereyra LP; Hiibel SR; Prieto Riquelme MV; Reardon KF; Pruden A
    Appl Environ Microbiol; 2010 Apr; 76(7):2192-202. PubMed ID: 20139321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass.
    Maki M; Leung KT; Qin W
    Int J Biol Sci; 2009 Jul; 5(5):500-16. PubMed ID: 19680472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulase, clostridia, and ethanol.
    Demain AL; Newcomb M; Wu JH
    Microbiol Mol Biol Rev; 2005 Mar; 69(1):124-54. PubMed ID: 15755956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum.
    Zhang YH; Lynd LR
    Appl Environ Microbiol; 2004 Mar; 70(3):1563-9. PubMed ID: 15006779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrotransformation of Clostridium thermocellum.
    Tyurin MV; Desai SG; Lynd LR
    Appl Environ Microbiol; 2004 Feb; 70(2):883-90. PubMed ID: 14766568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial cellulose utilization: fundamentals and biotechnology.
    Lynd LR; Weimer PJ; van Zyl WH; Pretorius IS
    Microbiol Mol Biol Rev; 2002 Sep; 66(3):506-77, table of contents. PubMed ID: 12209002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria.
    Ozkan M; Desai SG; Zhang Y; Stevenson DM; Beane J; White EA; Guerinot ML; Lynd LR
    J Ind Microbiol Biotechnol; 2001 Nov; 27(5):275-80. PubMed ID: 11781801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerobacter ethanolicus.
    Erbeznik M; Jones CR; Dawson KA; Strobel HJ
    Appl Environ Microbiol; 1997 Jul; 63(7):2949-51. PubMed ID: 9212442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21.
    Karita S; Nakayama K; Goto M; Sakka K; Kim WJ; Ogawa S
    Biosci Biotechnol Biochem; 2003 Jan; 67(1):183-5. PubMed ID: 12619693
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.