These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11782169)

  • 1. Effects of the protein environment on the structure and energetics of active sites of metalloenzymes. ONIOM study of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Vreven T; Musaev DG; Morokuma K; Farkas O; Schlegel HB
    J Am Chem Soc; 2002 Jan; 124(2):192-3. PubMed ID: 11782169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribonucleotide reductase.
    Nordlund P; Dalton H; Eklund H
    FEBS Lett; 1992 Aug; 307(3):257-62. PubMed ID: 1644180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic and spectroscopic studies of the non-heme reduced binuclear iron sites of two ribonucleotide reductase variants: comparison to reduced methane monooxygenase and contributions to O2 reactivity.
    Wei PP; Skulan AJ; Mitić N; Yang YS; Saleh L; Bollinger JM; Solomon EI
    J Am Chem Soc; 2004 Mar; 126(12):3777-88. PubMed ID: 15038731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT calculations of 57Fe Mössbauer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: applications to methane monooxygenase and ribonucleotide reductase.
    Han WG; Liu T; Lovell T; Noodleman L
    J Comput Chem; 2006 Sep; 27(12):1292-306. PubMed ID: 16786546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Musaev DG; Basch H; Morokuma K
    J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model complexes of di-iron sites in methane mono-oxygenase and ribonucleotide reductase: structure and reactivity.
    Fontecave M; Ménage S; Duboc-Toia C; Vincent JM; Lambeaux C
    Biochem Soc Trans; 1997 Feb; 25(1):65-9. PubMed ID: 9056845
    [No Abstract]   [Full Text] [Related]  

  • 7. Density functional and electrostatics study of oxidized and reduced ribonucleotide reductase; comparisons with methane monooxygenase.
    Lovell T; Li J; Noodleman L
    J Biol Inorg Chem; 2002 Sep; 7(7-8):799-809. PubMed ID: 12203016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT calculations of isomer shifts and quadrupole splitting parameters in synthetic iron-oxo complexes: applications to methane monooxygenase and ribonucleotide reductase.
    Liu T; Lovell T; Han WG; Noodleman L
    Inorg Chem; 2003 Aug; 42(17):5244-51. PubMed ID: 12924895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 19F NMR study of the interaction of fluoride ion with ribonucleotide reductase and methane monooxygenase.
    Hamman S; Atta M; Ehrenberg A; Wilkins P; Dalton H; Béguin C; Fontecave M
    Biochem Biophys Res Commun; 1993 Sep; 195(2):594-9. PubMed ID: 8373399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site.
    Whittington DA; Lippard SJ
    J Am Chem Soc; 2001 Feb; 123(5):827-38. PubMed ID: 11456616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of the peroxodiiron(III) intermediate generated during oxygen activation by the W48A/D84E variant of ribonucleotide reductase protein R2 from Escherichia coli.
    Baldwin J; Krebs C; Saleh L; Stelling M; Huynh BH; Bollinger JM; Riggs-Gelasco P
    Biochemistry; 2003 Nov; 42(45):13269-79. PubMed ID: 14609338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray crystallography and biological metal centers: is seeing believing?
    Sommerhalter M; Lieberman RL; Rosenzweig AC
    Inorg Chem; 2005 Feb; 44(4):770-8. PubMed ID: 15859245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional studies of oxidized and reduced methane monooxygenase. Optimized geometries and exchange coupling of active site clusters.
    Lovell T; Li J; Noodleman L
    Inorg Chem; 2001 Sep; 40(20):5251-66. PubMed ID: 11559090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics of oxidized and reduced methane monooxygenase active site clusters in the protein environment.
    Lovell T; Li J; Noodleman L
    Inorg Chem; 2001 Sep; 40(20):5267-78. PubMed ID: 11559091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of a designed diiron(III) protein: implications for cofactor stabilization and catalysis.
    Wade H; Stayrook SE; Degrado WF
    Angew Chem Int Ed Engl; 2006 Jul; 45(30):4951-4. PubMed ID: 16819737
    [No Abstract]   [Full Text] [Related]  

  • 16. Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b.
    Elango N; Radhakrishnan R; Froland WA; Wallar BJ; Earhart CA; Lipscomb JD; Ohlendorf DH
    Protein Sci; 1997 Mar; 6(3):556-68. PubMed ID: 9070438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Di-iron-carboxylate proteins.
    Nordlund P; Eklund H
    Curr Opin Struct Biol; 1995 Dec; 5(6):758-66. PubMed ID: 8749363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination by X-ray absorption spectroscopy of the Fe-Fe separation in the oxidized form of the hydroxylase of methane monooxygenase alone and in the presence of MMOD.
    Rudd DJ; Sazinsky MH; Merkx M; Lippard SJ; Hedman B; Hodgson KO
    Inorg Chem; 2004 Jul; 43(15):4579-89. PubMed ID: 15257585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural and Mössbauer study of complexes with Fe(2)(micro-O(H))(2) cores: stepwise oxidation from Fe(II)(micro-OH)(2)Fe(II) through Fe(II)(micro-OH)(2)Fe(III) to Fe(III)(micro-O)(micro-OH)Fe(III).
    Stubna A; Jo DH; Costas M; Brenessel WW; Andres H; Bominaar EL; Münck E; Que L
    Inorg Chem; 2004 May; 43(10):3067-79. PubMed ID: 15132612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase.
    Baldwin J; Voegtli WC; Khidekel N; Moënne-Loccoz P; Krebs C; Pereira AS; Ley BA; Huynh BH; Loehr TM; Riggs-Gelasco PJ; Rosenzweig AC; Bollinger JM
    J Am Chem Soc; 2001 Jul; 123(29):7017-30. PubMed ID: 11459480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.