BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11782434)

  • 21. Stoichiometry of active smad-transcription factor complexes on DNA.
    Inman GJ; Hill CS
    J Biol Chem; 2002 Dec; 277(52):51008-16. PubMed ID: 12374795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of a transcriptionally active Smad4 fragment.
    Qin B; Lam SS; Lin K
    Structure; 1999 Dec; 7(12):1493-503. PubMed ID: 10647180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling.
    Kato Y; Habas R; Katsuyama Y; Näär AM; He X
    Nature; 2002 Aug; 418(6898):641-6. PubMed ID: 12167862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytoplasmic PML function in TGF-beta signalling.
    Lin HK; Bergmann S; Pandolfi PP
    Nature; 2004 Sep; 431(7005):205-11. PubMed ID: 15356634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between Smad anchor for receptor activation and Smad3 is not essential for TGF-beta/Smad3-mediated signaling.
    Goto D; Nakajima H; Mori Y; Kurasawa K; Kitamura N; Iwamoto I
    Biochem Biophys Res Commun; 2001 Mar; 281(5):1100-5. PubMed ID: 11243848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling.
    Itoh S; Ericsson J; Nishikawa J; Heldin CH; ten Dijke P
    Nucleic Acids Res; 2000 Nov; 28(21):4291-8. PubMed ID: 11058129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.
    Nakao A; Imamura T; Souchelnytskyi S; Kawabata M; Ishisaki A; Oeda E; Tamaki K; Hanai J; Heldin CH; Miyazono K; ten Dijke P
    EMBO J; 1997 Sep; 16(17):5353-62. PubMed ID: 9311995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors.
    Kawabata M; Inoue H; Hanyu A; Imamura T; Miyazono K
    EMBO J; 1998 Jul; 17(14):4056-65. PubMed ID: 9670020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of constitutively active Smad2 mutants: evaluation of formation of Smad complex and subcellular distribution.
    Funaba M; Mathews LS
    Mol Endocrinol; 2000 Oct; 14(10):1583-91. PubMed ID: 11043574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of Smad4 function in pancreatic tumors: C-terminal truncation leads to decreased stability.
    Maurice D; Pierreux CE; Howell M; Wilentz RE; Owen MJ; Hill CS
    J Biol Chem; 2001 Nov; 276(46):43175-81. PubMed ID: 11553622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mouse homologue of FAST-1 transduces TGF beta superfamily signals and is expressed during early embryogenesis.
    Weisberg E; Winnier GE; Chen X; Farnsworth CL; Hogan BL; Whitman M
    Mech Dev; 1998 Dec; 79(1-2):17-27. PubMed ID: 10349617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the Lim-1 gene is mediated through conserved FAST-1/FoxH1 sites in the first intron.
    Watanabe M; Rebbert ML; Andreazzoli M; Takahashi N; Toyama R; Zimmerman S; Whitman M; Dawid IB
    Dev Dyn; 2002 Dec; 225(4):448-56. PubMed ID: 12454922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling and analysis of MH1 domain of Smads and their interaction with promoter DNA sequence motif.
    Makkar P; Metpally RP; Sangadala S; Reddy BV
    J Mol Graph Model; 2009 Apr; 27(7):803-12. PubMed ID: 19157940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway.
    Xu J; Attisano L
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4820-5. PubMed ID: 10781087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for the functional difference between Smad2 and Smad3 in FAST-2 (forkhead activin signal transducer-2)-mediated transcription.
    Nagarajan RP; Chen Y
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):253-9. PubMed ID: 10926851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneities in the biological and biochemical functions of Smad2 and Smad4 mutants naturally occurring in human lung cancers.
    Yanagisawa K; Uchida K; Nagatake M; Masuda A; Sugiyama M; Saito T; Yamaki K; Takahashi T; Osada H
    Oncogene; 2000 May; 19(19):2305-11. PubMed ID: 10822381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with pbx-Meis1/Prep1.
    Knoepfler PS; Bergstrom DA; Uetsuki T; Dac-Korytko I; Sun YH; Wright WE; Tapscott SJ; Kamps MP
    Nucleic Acids Res; 1999 Sep; 27(18):3752-61. PubMed ID: 10471746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a bone morphogenetic protein-responsive Smad-binding element.
    Kusanagi K; Inoue H; Ishidou Y; Mishima HK; Kawabata M; Miyazono K
    Mol Biol Cell; 2000 Feb; 11(2):555-65. PubMed ID: 10679014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Group 13 HOX proteins interact with the MH2 domain of R-Smads and modulate Smad transcriptional activation functions independent of HOX DNA-binding capability.
    Williams TM; Williams ME; Heaton JH; Gelehrter TD; Innis JW
    Nucleic Acids Res; 2005; 33(14):4475-84. PubMed ID: 16087734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.