These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11782434)

  • 81. Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization.
    Gori I; George R; Purkiss AG; Strohbuecker S; Randall RA; Ogrodowicz R; Carmignac V; Faivre L; Joshi D; Kjær S; Hill CS
    Elife; 2021 Jan; 10():. PubMed ID: 33416497
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs.
    Charney RM; Paraiso KD; Blitz IL; Cho KWY
    Semin Cell Dev Biol; 2017 Jun; 66():12-24. PubMed ID: 28341363
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Distinct modes of SMAD2 chromatin binding and remodeling shape the transcriptional response to NODAL/Activin signaling.
    Coda DM; Gaarenstroom T; East P; Patel H; Miller DS; Lobley A; Matthews N; Stewart A; Hill CS
    Elife; 2017 Feb; 6():. PubMed ID: 28191871
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structural Basis of Intracellular TGF-β Signaling: Receptors and Smads.
    Chaikuad A; Bullock AN
    Cold Spring Harb Perspect Biol; 2016 Nov; 8(11):. PubMed ID: 27549117
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Transcriptional Control by the SMADs.
    Hill CS
    Cold Spring Harb Perspect Biol; 2016 Oct; 8(10):. PubMed ID: 27449814
    [TBL] [Abstract][Full Text] [Related]  

  • 86. TGF-β Negatively Regulates CXCL1 Chemokine Expression in Mammary Fibroblasts through Enhancement of Smad2/3 and Suppression of HGF/c-Met Signaling Mechanisms.
    Fang WB; Mafuvadze B; Yao M; Zou A; Portsche M; Cheng N
    PLoS One; 2015; 10(8):e0135063. PubMed ID: 26252654
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A.
    Bourgeois B; Gilquin B; Tellier-Lebègue C; Östlund C; Wu W; Pérez J; El Hage P; Lallemand F; Worman HJ; Zinn-Justin S
    Sci Signal; 2013 Jun; 6(280):ra49. PubMed ID: 23779087
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Conservation and evolutionary divergence in the activity of receptor-regulated smads.
    Sorrentino GM; Gillis WQ; Oomen-Hajagos J; Thomsen GH
    Evodevo; 2012 Oct; 3(1):22. PubMed ID: 23020873
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Plasticity of TGF-β signaling.
    Cellière G; Fengos G; Hervé M; Iber D
    BMC Syst Biol; 2011 Nov; 5():184. PubMed ID: 22051045
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression.
    Schiro MM; Stauber SE; Peterson TL; Krueger C; Darnell SJ; Satyshur KA; Drinkwater NR; Newton MA; Hoffmann FM
    PLoS One; 2011; 6(9):e25021. PubMed ID: 21949838
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Nodal-dependent mesendoderm specification requires the combinatorial activities of FoxH1 and Eomesodermin.
    Slagle CE; Aoki T; Burdine RD
    PLoS Genet; 2011 May; 7(5):e1002072. PubMed ID: 21637786
    [TBL] [Abstract][Full Text] [Related]  

  • 92. TGF-beta signal transduction in chronic kidney disease.
    Schnaper HW; Jandeska S; Runyan CE; Hubchak SC; Basu RK; Curley JF; Smith RD; Hayashida T
    Front Biosci (Landmark Ed); 2009 Jan; 14(7):2448-65. PubMed ID: 19273211
    [TBL] [Abstract][Full Text] [Related]  

  • 93. An early requirement for maternal FoxH1 during zebrafish gastrulation.
    Pei W; Noushmehr H; Costa J; Ouspenskaia MV; Elkahloun AG; Feldman B
    Dev Biol; 2007 Oct; 310(1):10-22. PubMed ID: 17719025
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain.
    Dai F; Chang C; Lin X; Dai P; Mei L; Feng XH
    Mol Cell Biol; 2007 Sep; 27(17):6183-94. PubMed ID: 17591701
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Sequence comparison by sequence harmony identifies subtype-specific functional sites.
    Pirovano W; Feenstra KA; Heringa J
    Nucleic Acids Res; 2006; 34(22):6540-8. PubMed ID: 17130172
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription.
    Ross S; Cheung E; Petrakis TG; Howell M; Kraus WL; Hill CS
    EMBO J; 2006 Oct; 25(19):4490-502. PubMed ID: 16990801
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran.
    Kurisaki A; Kurisaki K; Kowanetz M; Sugino H; Yoneda Y; Heldin CH; Moustakas A
    Mol Cell Biol; 2006 Feb; 26(4):1318-32. PubMed ID: 16449645
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads.
    Schmierer B; Hill CS
    Mol Cell Biol; 2005 Nov; 25(22):9845-58. PubMed ID: 16260601
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Recognition of phosphorylated-Smad2-containing complexes by a novel Smad interaction motif.
    Randall RA; Howell M; Page CS; Daly A; Bates PA; Hill CS
    Mol Cell Biol; 2004 Feb; 24(3):1106-21. PubMed ID: 14729957
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The two faces of transforming growth factor beta in carcinogenesis.
    Roberts AB; Wakefield LM
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8621-3. PubMed ID: 12861075
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.