These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 11782466)
1. Affinity alkylation of the Trp-B4 residue of the beta -subunit of the glutaryl 7-aminocephalosporanic acid acylase of Pseudomonas sp. 130. Huang X; Zeng R; Ding X; Mao X; Ding Y; Rao Z; Xie Y; Jiang W; Zhao G J Biol Chem; 2002 Mar; 277(12):10256-64. PubMed ID: 11782466 [TBL] [Abstract][Full Text] [Related]
2. Affinity labeled glutaryl-7-amino cephalosporanic acid acylase C130 can hydrolyze the inhibitor during crystallization. Zhang W; Huang X; Zhao G; Jiang W Biochem Biophys Res Commun; 2004 Jan; 313(3):555-8. PubMed ID: 14697226 [TBL] [Abstract][Full Text] [Related]
3. The role of alpha-amino group of the N-terminal serine of beta subunit for enzyme catalysis and autoproteolytic activation of glutaryl 7-aminocephalosporanic acid acylase. Lee YS; Kim HW; Park SS J Biol Chem; 2000 Dec; 275(50):39200-6. PubMed ID: 10991936 [TBL] [Abstract][Full Text] [Related]
4. Involvement of arginine and tryptophan residues in catalytic activity of glutaryl 7-aminocephalosporanic acid acylase from Pseudomonas sp. strain GK16. Lee YS; Kim HW; Lee KB; Park SS Biochim Biophys Acta; 2000 Sep; 1523(1):123-7. PubMed ID: 11099866 [TBL] [Abstract][Full Text] [Related]
5. An acidic glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas nitroreducens. Lee YH; Chang TS; Liu HJ; Chu WS Biotechnol Appl Biochem; 1998 Oct; 28(2):113-8. PubMed ID: 9756463 [TBL] [Abstract][Full Text] [Related]
6. Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger. Tahir TA; Berrin JG; Flatman R; Roussel A; Roepstorff P; Williamson G; Juge N J Biol Chem; 2002 Nov; 277(46):44035-43. PubMed ID: 12207016 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of glutaryl-7-aminocephalosporanic acid acylase activity of gamma-glutamyltranspeptidase of Bacillus subtilis. Suzuki H; Yamada C; Kijima K; Ishihara S; Wada K; Fukuyama K; Kumagai H Biotechnol J; 2010 Aug; 5(8):829-37. PubMed ID: 20572278 [TBL] [Abstract][Full Text] [Related]
8. Structure of cephalosporin acylase in complex with glutaryl-7-aminocephalosporanic acid and glutarate: insight into the basis of its substrate specificity. Kim Y; Hol WG Chem Biol; 2001 Dec; 8(12):1253-64. PubMed ID: 11755403 [TBL] [Abstract][Full Text] [Related]
9. Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity. Golden E; Paterson R; Tie WJ; Anandan A; Flematti G; Molla G; Rosini E; Pollegioni L; Vrielink A Biochem J; 2013 Apr; 451(2):217-26. PubMed ID: 23373797 [TBL] [Abstract][Full Text] [Related]
11. Two-step autocatalytic processing of the glutaryl 7-aminocephalosporanic acid acylase from Pseudomonas sp. strain GK16. Lee YS; Park SS J Bacteriol; 1998 Sep; 180(17):4576-82. PubMed ID: 9721298 [TBL] [Abstract][Full Text] [Related]
12. Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase. Otten LG; Sio CF; van der Sloot AM; Cool RH; Quax WJ Chembiochem; 2004 Jun; 5(6):820-5. PubMed ID: 15174165 [TBL] [Abstract][Full Text] [Related]
13. Biochemical characterization of a glutaryl-7-aminocephalosporanic acid acylase from Pseudomonas strain BL072. Binder R; Brown J; Romancik G Appl Environ Microbiol; 1994 Jun; 60(6):1805-9. PubMed ID: 8031081 [TBL] [Abstract][Full Text] [Related]
14. Improvement of the glutaryl-7-aminocephalosporanic acid acylase activity of a bacterial gamma-glutamyltranspeptidase. Yamada C; Kijima K; Ishihara S; Miwa C; Wada K; Okada T; Fukuyama K; Kumagai H; Suzuki H Appl Environ Microbiol; 2008 Jun; 74(11):3400-9. PubMed ID: 18390671 [TBL] [Abstract][Full Text] [Related]
15. Atomic resolution structures and solution behavior of enzyme-substrate complexes of Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase. Multiple conformational states and implications for the mechanism of nitroaromatic explosive degradation. Khan H; Barna T; Harris RJ; Bruce NC; Barsukov I; Munro AW; Moody PC; Scrutton NS J Biol Chem; 2004 Jul; 279(29):30563-72. PubMed ID: 15128738 [TBL] [Abstract][Full Text] [Related]
16. Mutagenesis of N-terminal Amino Acid Residues in beta-subunit of Glutaryl-7-amino-cephalosporanic Acid Acylase C130. Zhang N; Ding XM; Huang X; Wang ED; Yang YL; Zhao GP; Jiang WH Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2001; 33(6):671-676. PubMed ID: 12035060 [TBL] [Abstract][Full Text] [Related]
17. The 2.0 A crystal structure of cephalosporin acylase. Kim Y; Yoon K; Khang Y; Turley S; Hol WG Structure; 2000 Oct; 8(10):1059-68. PubMed ID: 11080627 [TBL] [Abstract][Full Text] [Related]
18. A case for reverse protonation: identification of Glu160 as an acid/base catalyst in Thermoanaerobacterium saccharolyticum beta-xylosidase and detailed kinetic analysis of a site-directed mutant. Vocadlo DJ; Wicki J; Rupitz K; Withers SG Biochemistry; 2002 Aug; 41(31):9736-46. PubMed ID: 12146939 [TBL] [Abstract][Full Text] [Related]
19. Probing the conformational change of Escherichia coli undecaprenyl pyrophosphate synthase during catalysis using an inhibitor and tryptophan mutants. Chen YH; Chen AP; Chen CT; Wang AH; Liang PH J Biol Chem; 2002 Mar; 277(9):7369-76. PubMed ID: 11744728 [TBL] [Abstract][Full Text] [Related]
20. Characterization and manipulation of the acyl chain selectivity of fatty acid amide hydrolase. Patricelli MP; Cravatt BF Biochemistry; 2001 May; 40(20):6107-15. PubMed ID: 11352748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]