BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 11782482)

  • 1. Purine and pyrimidine salvage in whole rat brain. Utilization of ATP-derived ribose-1-phosphate and 5-phosphoribosyl-1-pyrophosphate generated in experiments with dialyzed cell-free extracts.
    Barsotti C; Tozzi MG; Ipata PL
    J Biol Chem; 2002 Mar; 277(12):9865-9. PubMed ID: 11782482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro recycling of alpha-D-ribose 1-phosphate for the salvage of purine bases.
    Mascia L; Cappiello M; Cherri S; Ipata PL
    Biochim Biophys Acta; 2000 Mar; 1474(1):70-4. PubMed ID: 10699492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uracil salvage pathway in PC12 cells.
    Mascia L; Turchi G; Bemi V; Ipata PL
    Biochim Biophys Acta; 2001 Nov; 1524(1):45-50. PubMed ID: 11078957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro assessment of salvage pathways for pyrimidine bases in rat liver and brain.
    Cappiello M; Mascia L; Scolozzi C; Giorgelli F; Ipata PL
    Biochim Biophys Acta; 1998 Oct; 1425(2):273-81. PubMed ID: 9795240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The purine nucleoside cycle in cell-free extracts of rat brain: evidence for the occurrence of an inosine and a guanosine cycle with distinct metabolic roles.
    Barsotti C; Pesi R; Felice F; Ipata PL
    Cell Mol Life Sci; 2003 Apr; 60(4):786-93. PubMed ID: 12785725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key role of uridine kinase and uridine phosphorylase in the homeostatic regulation of purine and pyrimidine salvage in brain.
    Balestri F; Barsotti C; Lutzemberger L; Camici M; Ipata PL
    Neurochem Int; 2007 Dec; 51(8):517-23. PubMed ID: 17643556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways for alpha-D-ribose utilization for nucleobase salvage and 5-fluorouracil activation in rat brain.
    Barsotti C; Ipata PL
    Biochem Pharmacol; 2002 Jan; 63(2):117-22. PubMed ID: 11841784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A possible role for 5-phosphoribosyl 1-pyrophosphate in the stimulation of uterine purine nucleotide synthesis in response to oestradiol-17 .
    Oliver JM
    Biochem J; 1972 Jul; 128(4):771-7. PubMed ID: 4344697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significance of the 5-phosphoribosyl-1-pyrophosphate pool for cardiac purine and pyrimidine nucleotide synthesis: studies with ribose, adenine, inosine, and orotic acid in rats.
    Zimmer HG
    Cardiovasc Drugs Ther; 1998 Sep; 12 Suppl 2():179-87. PubMed ID: 9794092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ribose 5-phosphate and 5-phosphoribosyl-1-pyrophosphate availability on de novo synthesis of purine nucleotides in rat liver slices.
    Boer P; Lipstein B; De Vries A; Sperling O
    Biochim Biophys Acta; 1976 Apr; 432(1):10-7. PubMed ID: 1260047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of purine metabolism by AICA-riboside in human B lymphoblasts.
    Barankiewicz J; Jimenez R; Ronlov G; Magill M; Gruber HE
    Arch Biochem Biophys; 1990 Nov; 282(2):377-85. PubMed ID: 1700665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation pathways of 5-fluorouracil in rat organs and in PC12 cells.
    Mascia L; Ipata PL
    Biochem Pharmacol; 2001 Jul; 62(2):213-8. PubMed ID: 11389880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine and pyrimidine metabolism.
    Ciba Found Symp; 1977; (48):331-55. PubMed ID: 245993
    [No Abstract]   [Full Text] [Related]  

  • 14. In vitro 5-phosphoribosyl 1-pyrophosphate-independent salvage biosynthesis of ribo- and deoxyriboadenine nucleotides in Bacillus cereus.
    Ipata PL; Gini S; Tozzi MG
    Biochim Biophys Acta; 1985; 842(1):84-9. PubMed ID: 19927404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pentose phosphates in nucleoside interconversion and catabolism.
    Tozzi MG; Camici M; Mascia L; Sgarrella F; Ipata PL
    FEBS J; 2006 Mar; 273(6):1089-101. PubMed ID: 16519676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of de novo purine synthesis in chick liver slices. Role of phosphoribosylpyrophosphate availability and of salvage purine nucleotide synthesis.
    Lipstein B; Boer P; Sperling O
    Biochim Biophys Acta; 1978 Nov; 521(1):45-54. PubMed ID: 214123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for the determination of intracellular levels of ribose phosphates.
    Camici M; Tozzi MG; Ipata PL
    J Biochem Biophys Methods; 2006 Oct; 68(3):145-54. PubMed ID: 16893570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The route of non-enzymic and enzymic breakdown of 5-phosphoribosyl 1-pyrophosphate to ribose 1-phosphate.
    Trembacz H; Jezewska MM
    Biochem J; 1990 Nov; 271(3):621-5. PubMed ID: 1700897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of de novo purine synthesis in human and rat tissue: role of oxidative pentose phosphate pathway activity and of ribose-5-phosphate and phosphoribosylpyrophosphate availability.
    Sperling O; Boer P; Lipstein B; Kupfer B; Brosh S; Zoref E; Bashkin P; de Vries A
    Adv Exp Med Biol; 1977; 76A():481-7. PubMed ID: 193377
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of the purine salvage pathway in rat liver.
    Kim YA; King MT; Teague WE; Rufo GA; Veech RL; Passonneau JV
    Am J Physiol; 1992 Mar; 262(3 Pt 1):E344-52. PubMed ID: 1372483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.