BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 11782538)

  • 1. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine.
    Banerjee R; Liu J; Beatty W; Pelosof L; Klemba M; Goldberg DE
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):990-5. PubMed ID: 11782538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of plasmepsins I and II aspartic proteases of the Plasmodium falciparum digestive vacuole.
    Luker KE; Francis SE; Gluzman IY; Goldberg DE
    Mol Biochem Parasitol; 1996 Jul; 79(1):71-8. PubMed ID: 8844673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis and maturation of the malaria aspartic hemoglobinases plasmepsins I and II.
    Francis SE; Banerjee R; Goldberg DE
    J Biol Chem; 1997 Jun; 272(23):14961-8. PubMed ID: 9169469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four aspartic proteases occur in the Plasmodium falciparum food vacuole.
    Egan TJ
    Trends Parasitol; 2002 Apr; 18(4):150. PubMed ID: 11998697
    [No Abstract]   [Full Text] [Related]  

  • 5. Food vacuole plasmepsins are processed at a conserved site by an acidic convertase activity in Plasmodium falciparum.
    Banerjee R; Francis SE; Goldberg DE
    Mol Biochem Parasitol; 2003 Jul; 129(2):157-65. PubMed ID: 12850260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum.
    Klemba M; Goldberg DE
    Mol Biochem Parasitol; 2005 Oct; 143(2):183-91. PubMed ID: 16024107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum.
    Klemba M; Beatty W; Gluzman I; Goldberg DE
    J Cell Biol; 2004 Jan; 164(1):47-56. PubMed ID: 14709539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prodomain processing of recombinant plasmepsin II and IV, the aspartic proteases of Plasmodium falciparum, is auto- and trans-catalytic.
    Kim YM; Lee MH; Piao TG; Lee JW; Kim JH; Lee S; Choi KM; Jiang JH; Kim TU; Park H
    J Biochem; 2006 Feb; 139(2):189-95. PubMed ID: 16452306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.
    Li F; Bounkeua V; Pettersen K; Vinetz JM
    Malar J; 2016 Feb; 15():111. PubMed ID: 26911483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and characterisation of plasmepsin I from Plasmodium falciparum.
    Moon RP; Tyas L; Certa U; Rupp K; Bur D; Jacquet C; Matile H; Loetscher H; Grueninger-Leitch F; Kay J; Dunn BM; Berry C; Ridley RG
    Eur J Biochem; 1997 Mar; 244(2):552-60. PubMed ID: 9119023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton.
    Le Bonniec S; Deregnaucourt C; Redeker V; Banerjee R; Grellier P; Goldberg DE; Schrével J
    J Biol Chem; 1999 May; 274(20):14218-23. PubMed ID: 10318841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors.
    Moura PA; Dame JB; Fidock DA
    Antimicrob Agents Chemother; 2009 Dec; 53(12):4968-78. PubMed ID: 19752273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical roles for the digestive vacuole plasmepsins of Plasmodium falciparum in vacuolar function.
    Bonilla JA; Bonilla TD; Yowell CA; Fujioka H; Dame JB
    Mol Microbiol; 2007 Jul; 65(1):64-75. PubMed ID: 17581121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmodium food vacuole plasmepsins are activated by falcipains.
    Drew ME; Banerjee R; Uffman EW; Gilbertson S; Rosenthal PJ; Goldberg DE
    J Biol Chem; 2008 May; 283(19):12870-6. PubMed ID: 18308731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production.
    Kolakovich KA; Gluzman IY; Duffin KL; Goldberg DE
    Mol Biochem Parasitol; 1997 Aug; 87(2):123-35. PubMed ID: 9247924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy.
    Omara-Opyene AL; Moura PA; Sulsona CR; Bonilla JA; Yowell CA; Fujioka H; Fidock DA; Dame JB
    J Biol Chem; 2004 Dec; 279(52):54088-96. PubMed ID: 15491999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase.
    Francis SE; Gluzman IY; Oksman A; Knickerbocker A; Mueller R; Bryant ML; Sherman DR; Russell DG; Goldberg DE
    EMBO J; 1994 Jan; 13(2):306-17. PubMed ID: 8313875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Plasmodium falciparum food vacuole plasmepsins.
    Liu J; Gluzman IY; Drew ME; Goldberg DE
    J Biol Chem; 2005 Jan; 280(2):1432-7. PubMed ID: 15513918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease.
    Goldberg DE; Slater AF; Beavis R; Chait B; Cerami A; Henderson GB
    J Exp Med; 1991 Apr; 173(4):961-9. PubMed ID: 2007860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmepsin 4, the food vacuole aspartic proteinase found in all Plasmodium spp. infecting man.
    Dame JB; Yowell CA; Omara-Opyene L; Carlton JM; Cooper RA; Li T
    Mol Biochem Parasitol; 2003 Aug; 130(1):1-12. PubMed ID: 14550891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.