BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11782982)

  • 1. Venous oxygen levels during aerobic forearm exercise: An index of impaired oxidative metabolism in mitochondrial myopathy.
    Taivassalo T; Abbott A; Wyrick P; Haller RG
    Ann Neurol; 2002 Jan; 51(1):38-44. PubMed ID: 11782982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A forearm exercise screening test for mitochondrial myopathy.
    Jensen TD; Kazemi-Esfarjani P; Skomorowska E; Vissing J
    Neurology; 2002 May; 58(10):1533-8. PubMed ID: 12034793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients.
    Taivassalo T; Jensen TD; Kennaway N; DiMauro S; Vissing J; Haller RG
    Brain; 2003 Feb; 126(Pt 2):413-23. PubMed ID: 12538407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased capillaries in mitochondrial myopathy: implications for the regulation of oxygen delivery.
    Taivassalo T; Ayyad K; Haller RG
    Brain; 2012 Jan; 135(Pt 1):53-61. PubMed ID: 22232594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate metabolism during exercise in patients with mitochondrial myopathy.
    Jeppesen TD; Orngreen MC; Van Hall G; Vissing J
    Neuromuscul Disord; 2013 Aug; 23(8):629-36. PubMed ID: 23838278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of intramuscular and venous blood pH, PCO(2) and PO(2) during rhythmic handgrip exercise.
    Soller BR; Hagan RD; Shear M; Walz JM; Landry M; Anunciacion D; Orquiola A; Heard SO
    Physiol Meas; 2007 Jun; 28(6):639-49. PubMed ID: 17664618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aerobic forearm exercise test, a non-invasive tool to screen for mitochondrial disorders.
    Meulemans A; Gerlo E; Seneca S; Lissens W; Smet J; Van Coster R; De Meirleir L
    Acta Neurol Belg; 2007 Sep; 107(3):78-83. PubMed ID: 18072335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle bioenergetics in myotonic dystrophy.
    Taylor DJ; Kemp GJ; Woods CG; Edwards JH; Radda GK
    J Neurol Sci; 1993 Jun; 116(2):193-200. PubMed ID: 8336166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy.
    Jeppesen TD; Vissing J; González-Alonso J
    Mitochondrion; 2012 May; 12(3):414-22. PubMed ID: 22155147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate increase and oxygen desaturation in mitochondrial disorders--evaluation of two diagnostic screening protocols.
    Hanisch F; Müller T; Muser A; Deschauer M; Zierz S
    J Neurol; 2006 Apr; 253(4):417-23. PubMed ID: 16619117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of tissue oxygen consumption in patients with mitochondrial myopathy by noninvasive tissue oximetry.
    Abe K; Matsuo Y; Kadekawa J; Inoue S; Yanagihara T
    Neurology; 1997 Sep; 49(3):837-41. PubMed ID: 9305350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral circulatory factors limit rate of increase in muscle O(2) uptake at onset of heavy exercise.
    MacDonald MJ; Naylor HL; Tschakovsky ME; Hughson RL
    J Appl Physiol (1985); 2001 Jan; 90(1):83-9. PubMed ID: 11133896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy.
    Jeppesen TD; Quistorff B; Wibrand F; Vissing J
    J Neurol; 2007 Jan; 254(1):29-37. PubMed ID: 17278044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic profiles of exercise in patients with McArdle disease or mitochondrial myopathy.
    Delaney NF; Sharma R; Tadvalkar L; Clish CB; Haller RG; Mootha VK
    Proc Natl Acad Sci U S A; 2017 Aug; 114(31):8402-8407. PubMed ID: 28716914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy.
    Nabben M; Schmitz JPJ; Ciapaite J; le Clercq CMP; van Riel NA; Haak HR; Nicolay K; de Coo IFM; Smeets H; Praet SF; van Loon LJ; Prompers JJ
    Am J Physiol Regul Integr Comp Physiol; 2017 May; 312(5):R689-R701. PubMed ID: 28179228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies.
    Vissing J; Vissing SF; MacLean DA; Saltin B; Quistorff B; Haller RG
    J Clin Invest; 1998 Apr; 101(8):1654-60. PubMed ID: 9541495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial disease. Pulmonary function, exercise performance, and blood lactate levels.
    Dandurand RJ; Matthews PM; Arnold DL; Eidelman DH
    Chest; 1995 Jul; 108(1):182-9. PubMed ID: 7606956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired oxygen extraction in metabolic myopathies: detection and quantification by near-infrared spectroscopy.
    Grassi B; Marzorati M; Lanfranconi F; Ferri A; Longaretti M; Stucchi A; Vago P; Marconi C; Morandi L
    Muscle Nerve; 2007 Apr; 35(4):510-20. PubMed ID: 17143893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exertional dyspnea in mitochondrial myopathy: clinical features and physiological mechanisms.
    Heinicke K; Taivassalo T; Wyrick P; Wood H; Babb TG; Haller RG
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R873-84. PubMed ID: 21813873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR imaging as a potential diagnostic test for metabolic myopathies: importance of variations in the T2 of muscle with exercise.
    Jehenson P; Leroy-Willig A; de Kerviler E; Duboc D; Syrota A
    AJR Am J Roentgenol; 1993 Aug; 161(2):347-51. PubMed ID: 8333376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.