These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11783725)

  • 41. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.
    Saeid Khalafvand S; Han HC
    J Biomech Eng; 2015 Jun; 137(6):061007. PubMed ID: 25761257
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Haemodynamic of blood flow through stenotic aortic valve.
    Sadeghpour F; Fatouraee N; Navidbakhsh M
    J Med Eng Technol; 2017 Feb; 41(2):108-114. PubMed ID: 27629019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models.
    Biglarian M; Larimi MM; Afrouzi HH; Moshfegh A; Toghraie D; Javadzadegan A; Rostami S
    Comput Methods Programs Biomed; 2020 Mar; 185():105170. PubMed ID: 31710988
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of cyclic motion on coronary blood flow.
    Hasan M; Rubenstein DA; Yin W
    J Biomech Eng; 2013 Dec; 135(12):121002. PubMed ID: 24008675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques.
    Gao H; Long Q
    J Biomech; 2008 Oct; 41(14):3053-9. PubMed ID: 18786671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions?
    Balossino R; Pennati G; Migliavacca F; Formaggia L; Veneziani A; Tuveri M; Dubini G
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):113-23. PubMed ID: 18763157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
    Lu Y; Lu X; Zhuang L; Wang W
    Biorheology; 2002; 39(3-4):431-6. PubMed ID: 12122263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hemodynamic Factors Affecting Carotid Sinus Atherosclerotic Stenosis.
    Li CH; Gao BL; Wang JW; Liu JF; Li H; Yang ST
    World Neurosurg; 2019 Jan; 121():e262-e276. PubMed ID: 30261386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Finite element model of the patched human carotid.
    Kamenskiy AV; Pipinos II; Desyatova AS; Salkovskiy YE; Yu Kossovich L; Kirillova IV; Bockeria LA; Morozov KM; Polyaev VO; Lynch TG; Dzenis YA
    Vasc Endovascular Surg; 2009 Dec; 43(6):533-41. PubMed ID: 19828588
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass.
    Tokuda Y; Song MH; Ueda Y; Usui A; Akita T; Yoneyama S; Maruyama S
    Eur J Cardiothorac Surg; 2008 Feb; 33(2):164-7. PubMed ID: 18160302
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Blood flow in a compliant vessel by the immersed boundary method.
    Kim Y; Lim S; Raman SV; Simonetti OP; Friedman A
    Ann Biomed Eng; 2009 May; 37(5):927-42. PubMed ID: 19283479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of estimation methods for computational fluid dynamics outflow boundary conditions using patient-specific carotid artery.
    Lee CJ; Uemiya N; Ishihara S; Zhang Y; Qian Y
    Proc Inst Mech Eng H; 2013 Jun; 227(6):663-71. PubMed ID: 23636745
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupling of shear-circumferential stress pulses investigation through stress phase angle in FSI models of stenotic artery using experimental data.
    Samaee M; Tafazzoli-Shadpour M; Alavi H
    Med Biol Eng Comput; 2017 Aug; 55(8):1147-1162. PubMed ID: 27709408
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stress and strain behaviour modelling of the carotid bifurcation.
    Lawrence-Brown M; Stanley BM; Sun Z; Semmens JB; Liffman K
    ANZ J Surg; 2011 Nov; 81(11):810-6. PubMed ID: 22295401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture.
    Boyd AJ; Kuhn DC; Lozowy RJ; Kulbisky GP
    J Vasc Surg; 2016 Jun; 63(6):1613-9. PubMed ID: 25752691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measurement of hemodynamics in human carotid artery using ultrasound and computational fluid dynamics.
    Starmans-Kool MJ; Stanton AV; Zhao S; Xu XY; Thom SA; Hughes AD
    J Appl Physiol (1985); 2002 Mar; 92(3):957-61. PubMed ID: 11842026
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.