These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 11784054)

  • 1. MAP kinase converts MyoD into an instructive muscle differentiation factor in Xenopus.
    Zetser A; Frank D; Bengal E
    Dev Biol; 2001 Dec; 240(1):168-81. PubMed ID: 11784054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between noggin and bone morphogenetic protein 4 activities may regulate dorsalization during Xenopus development.
    Re'em-Kalma Y; Lamb T; Frank D
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12141-5. PubMed ID: 8618860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development.
    Keren A; Bengal E; Frank D
    Dev Biol; 2005 Dec; 288(1):73-86. PubMed ID: 16248994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development.
    Keren A; Tamir Y; Bengal E
    Mol Cell Endocrinol; 2006 Jun; 252(1-2):224-30. PubMed ID: 16644098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development.
    Pyati UJ; Webb AE; Kimelman D
    Development; 2005 May; 132(10):2333-43. PubMed ID: 15829520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of muscle genes without myogenesis by ectopic expression of MyoD in frog embryo cells.
    Hopwood ND; Gurdon JB
    Nature; 1990 Sep; 347(6289):197-200. PubMed ID: 1697650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simvastatin antagonizes tumor necrosis factor-alpha inhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase pathway.
    Yamashita M; Otsuka F; Mukai T; Otani H; Inagaki K; Miyoshi T; Goto J; Yamamura M; Makino H
    J Endocrinol; 2008 Mar; 196(3):601-13. PubMed ID: 18310456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation of ERK1/2 and p38(MAPK) by components of the Rho signaling pathway during sphingosine-1-phosphate-induced smooth muscle cell migration.
    Galaria II; Fegley AJ; Nicholl SM; Roztocil E; Davies MG
    J Surg Res; 2004 Dec; 122(2):173-9. PubMed ID: 15555614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus muscle development: from primary to secondary myogenesis.
    Chanoine C; Hardy S
    Dev Dyn; 2003 Jan; 226(1):12-23. PubMed ID: 12508220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning.
    Kumano G; Smith WC
    Dev Dyn; 2002 Dec; 225(4):409-21. PubMed ID: 12454919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MyoD enhances BMP7-induced osteogenic differentiation of myogenic cell cultures.
    Komaki M; Asakura A; Rudnicki MA; Sodek J; Cheifetz S
    J Cell Sci; 2004 Mar; 117(Pt 8):1457-68. PubMed ID: 15020674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dorsal-ventral patterning and neural induction in Xenopus embryos.
    De Robertis EM; Kuroda H
    Annu Rev Cell Dev Biol; 2004; 20():285-308. PubMed ID: 15473842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hes6 is required for MyoD induction during gastrulation.
    Murai K; Vernon AE; Philpott A; Jones P
    Dev Biol; 2007 Dec; 312(1):61-76. PubMed ID: 17950722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient expression of XMyoD in non-somitic mesoderm of Xenopus gastrulae.
    Frank D; Harland RM
    Development; 1991 Dec; 113(4):1387-93. PubMed ID: 1667381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of bone morphogenetic protein-4 function in the initial myofibrillogenesis of chick cardiogenesis.
    Nakajima Y; Yamagishi T; Ando K; Nakamura H
    Dev Biol; 2002 May; 245(2):291-303. PubMed ID: 11977982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of ID protein by growth and differentiation factor 5 (GDF5) through a smad-dependent and MAPK-independent pathway in HUVSMC.
    Chen X; Zankl A; Niroomand F; Liu Z; Katus HA; Jahn L; Tiefenbacher C
    J Mol Cell Cardiol; 2006 Jul; 41(1):26-33. PubMed ID: 16716349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells.
    Ryoo HM; Lee MH; Kim YJ
    Gene; 2006 Jan; 366(1):51-7. PubMed ID: 16314053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter.
    Pan Q; Yu Y; Chen Q; Li C; Wu H; Wan Y; Ma J; Sun F
    J Cell Physiol; 2008 Oct; 217(1):228-41. PubMed ID: 18506848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin restores differentiation of Ras-transformed C2C12 myoblasts by inducing NF-kappaB through an AKT/P70S6K/p38-MAPK pathway.
    Conejo R; de Alvaro C; Benito M; Cuadrado A; Lorenzo M
    Oncogene; 2002 May; 21(23):3739-53. PubMed ID: 12032842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditional BMP inhibition in Xenopus reveals stage-specific roles for BMPs in neural and neural crest induction.
    Wawersik S; Evola C; Whitman M
    Dev Biol; 2005 Jan; 277(2):425-42. PubMed ID: 15617685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.