These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11784201)

  • 1. Air-stable trialkylphosphonium salts: simple, practical, and versatile replacements for air-sensitive trialkylphosphines. Applications in stoichiometric and catalytic processes.
    Netherton MR; Fu GC
    Org Lett; 2001 Dec; 3(26):4295-8. PubMed ID: 11784201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aldehyde to Ketone Homologation Enabled by Improved Access to Thioalkyl Phosphonium Salts.
    Fragis M; Deobald JL; Dharavath S; Scott J; Magolan J
    Org Lett; 2021 Jun; 23(12):4548-4552. PubMed ID: 34053223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobalt(II)-catalyzed asymmetric hydrosilylation of simple ketones using dipyridylphosphine ligands in air.
    Yu F; Zhang XC; Wu FF; Zhou JN; Fang W; Wu J; Chan AS
    Org Biomol Chem; 2011 Aug; 9(16):5652-4. PubMed ID: 21709901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Visible-Light-Driven Synthesis of Asymmetrical Phosphines and Phosphonium Salts.
    Arockiam PB; Lennert U; Graf C; Rothfelder R; Scott DJ; Fischer TG; Zeitler K; Wolf R
    Chemistry; 2020 Dec; 26(69):16374-16382. PubMed ID: 32484989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel(II)-dipyridylphosphine-catalyzed enantioselective hydrosilylation of ketones in air.
    Wu FF; Zhou JN; Fang Q; Hu YH; Li S; Zhang XC; Chan AS; Wu J
    Chem Asian J; 2012 Nov; 7(11):2527-30. PubMed ID: 22927322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations.
    Wang T; Han X; Zhong F; Yao W; Lu Y
    Acc Chem Res; 2016 Jul; 49(7):1369-78. PubMed ID: 27310293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic phosphorus(V)-mediated nucleophilic substitution reactions: development of a catalytic Appel reaction.
    Denton RM; An J; Adeniran B; Blake AJ; Lewis W; Poulton AM
    J Org Chem; 2011 Aug; 76(16):6749-67. PubMed ID: 21744876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of tetrakis (hydroxymethyl) phosphonium chloride by high-concentration phosphine in industrial off-gas.
    Huang X; Wei Y; Zhou T; Qin Y; Gao K; Ding X
    Water Sci Technol; 2013; 68(2):342-7. PubMed ID: 23863426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Photoactivatable Phosphine Probe for Induction of Intracellular Reductive Stress with Single-Cell Precision.
    Tirla A; Rivera-Fuentes P
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14709-14712. PubMed ID: 27763731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective reduction of alpha-bromopenicillanates by tributylphosphine.
    Ishiwata A; Kotra LP; Miyashita K; Nagase T; Mobashery S
    Org Lett; 2000 Sep; 2(18):2889-92. PubMed ID: 10964391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology for in situ protection of aldehydes and ketones using trimethylsilyl trifluoromethanesulfonate and phosphines: selective alkylation and reduction of ketones, esters, amides, and nitriles.
    Yahata K; Minami M; Yoshikawa Y; Watanabe K; Fujioka H
    Chem Pharm Bull (Tokyo); 2013; 61(12):1298-307. PubMed ID: 24436962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trialkylphosphines Having a Bulky Phosphacyclopentane Backbone: Structural and Redox Properties Depending on the Exocyclic Alkyl Groups and EPR Observation of a Persistent Trialkylphosphine Radical Cation.
    Hirakawa F; Nakagawa H; Honda S; Ishida S; Iwamoto T
    J Org Chem; 2020 Nov; 85(22):14634-14642. PubMed ID: 32700539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system.
    Cervilla A; Pérez-Pla F; Llopis E; Piles M
    Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tris(3-hydroxypropyl)phosphine (THPP): A mild, air-stable reagent for the rapid, reductive cleavage of small-molecule disulfides.
    McNulty J; Krishnamoorthy V; Amoroso D; Moser M
    Bioorg Med Chem Lett; 2015 Oct; 25(19):4114-7. PubMed ID: 26318995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sterically hindered phosphine and phosphonium-based activators and additives for olefin polymerization.
    McCahill JS; Welch GC; Stephan DW
    Dalton Trans; 2009 Oct; (40):8555-61. PubMed ID: 19809731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of secondary and tertiary phosphine oxides to phosphines.
    Hérault D; Nguyen DH; Nuel D; Buono G
    Chem Soc Rev; 2015 Apr; 44(8):2508-28. PubMed ID: 25714261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precipiton reagents: precipiton phosphines for solution-phase reductions.
    Bosanac T; Wilcox CS
    Org Lett; 2004 Jul; 6(14):2321-4. PubMed ID: 15228269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalyzing pyramidal inversion: configurational lability of P-stereogenic phosphines via single electron oxidation.
    Reichl KD; Ess DH; Radosevich AT
    J Am Chem Soc; 2013 Jun; 135(25):9354-7. PubMed ID: 23745778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vinylogous intramolecular Morita-Baylis-Hillman reaction: synthesis of functionalized cyclopentenes and cyclohexenes with trialkylphosphines as nucleophilic catalysts.
    Frank SA; Mergott DJ; Roush WR
    J Am Chem Soc; 2002 Mar; 124(11):2404-5. PubMed ID: 11890766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taming a functional group: creating air-stable, chiral primary phosphanes.
    Hiney RM; Higham LJ; Müller-Bunz H; Gilheany DG
    Angew Chem Int Ed Engl; 2006 Nov; 45(43):7248-51. PubMed ID: 17022105
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.