These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 11784443)
1. Brain areas specific for attentional load in a motion-tracking task. Jovicich J; Peters RJ; Koch C; Braun J; Chang L; Ernst T J Cogn Neurosci; 2001 Nov; 13(8):1048-58. PubMed ID: 11784443 [TBL] [Abstract][Full Text] [Related]
2. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study. Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528 [TBL] [Abstract][Full Text] [Related]
3. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076 [TBL] [Abstract][Full Text] [Related]
4. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex. Saygin AP; Sereno MI Cereb Cortex; 2008 Sep; 18(9):2158-68. PubMed ID: 18234687 [TBL] [Abstract][Full Text] [Related]
5. Parametric modulation of cortical activation during smooth pursuit with and without target blanking. an fMRI study. Nagel M; Sprenger A; Zapf S; Erdmann C; Kömpf D; Heide W; Binkofski F; Lencer R Neuroimage; 2006 Feb; 29(4):1319-25. PubMed ID: 16216531 [TBL] [Abstract][Full Text] [Related]
6. Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study. Nakashita S; Saito DN; Kochiyama T; Honda M; Tanabe HC; Sadato N Brain Res Bull; 2008 Mar; 75(5):513-25. PubMed ID: 18355627 [TBL] [Abstract][Full Text] [Related]
15. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Liu X; Banich MT; Jacobson BL; Tanabe JL Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581 [TBL] [Abstract][Full Text] [Related]
16. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention. Salmi J; Rinne T; Koistinen S; Salonen O; Alho K Brain Res; 2009 Aug; 1286():155-64. PubMed ID: 19577551 [TBL] [Abstract][Full Text] [Related]
17. Neural correlates of "analytical-specific visual perception" and degree of task difficulty as investigated by the Mangina-Test: a functional magnetic resonance imaging (fMRI) study in young healthy adults. Mangina CA; Beuzeron-Mangina H; Ricciardi E; Pietrini P; Chiarenza GA; Casarotto S Int J Psychophysiol; 2009 Aug; 73(2):150-6. PubMed ID: 19414052 [TBL] [Abstract][Full Text] [Related]
18. Representing connected and disconnected shapes in human inferior intraparietal sulcus. Xu Y Neuroimage; 2008 May; 40(4):1849-56. PubMed ID: 18353688 [TBL] [Abstract][Full Text] [Related]
19. On the neural basis of focused and divided attention. Nebel K; Wiese H; Stude P; de Greiff A; Diener HC; Keidel M Brain Res Cogn Brain Res; 2005 Dec; 25(3):760-76. PubMed ID: 16337110 [TBL] [Abstract][Full Text] [Related]
20. Connectivity and signal intensity in the parieto-occipital cortex predicts top-down attentional effect in visual masking: an fMRI study based on individual differences. Tsubomi H; Ikeda T; Hanakawa T; Hirose N; Fukuyama H; Osaka N Neuroimage; 2009 Apr; 45(2):587-97. PubMed ID: 19103296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]