These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11784706)

  • 1. Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve.
    Garthwaite G; Goodwin DA; Batchelor AM; Leeming K; Garthwaite J
    Neuroscience; 2002; 109(1):145-55. PubMed ID: 11784706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calpain-dependent neurofilament breakdown in anoxic and ischemic rat central axons.
    Stys PK; Jiang Q
    Neurosci Lett; 2002 Aug; 328(2):150-4. PubMed ID: 12133577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of ischaemic damage to central white matter axons: a quantitative histological analysis using rat optic nerve.
    Garthwaite G; Brown G; Batchelor AM; Goodwin DA; Garthwaite J
    Neuroscience; 1999; 94(4):1219-30. PubMed ID: 10625062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide stimulates cGMP formation in rat optic nerve axons, providing a specific marker of axon viability.
    Garthwaite G; Goodwin DA; Garthwaite J
    Eur J Neurosci; 1999 Dec; 11(12):4367-72. PubMed ID: 10594663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soluble guanylyl cyclase activator YC-1 protects white matter axons from nitric oxide toxicity and metabolic stress, probably through Na(+) channel inhibition.
    Garthwaite G; Goodwin DA; Neale S; Riddall D; Garthwaite J
    Mol Pharmacol; 2002 Jan; 61(1):97-104. PubMed ID: 11752210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord.
    Ashki N; Hayes KC; Bao F
    Neuroscience; 2008 Sep; 156(1):107-17. PubMed ID: 18662749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca(2+)-mediated injury in myelinated CNS axons.
    Waxman SG; Black JA; Ransom BR; Stys PK
    Brain Res; 1994 May; 644(2):197-204. PubMed ID: 8050031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elemental composition and water content of rat optic nerve myelinated axons during in vitro post-anoxia reoxygenation.
    Stys PK; Lopachin RM
    Neuroscience; 1996 Aug; 73(4):1081-90. PubMed ID: 8809826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central axons preparing to myelinate are highly sensitive [corrected] to ischemic injury.
    Alix JJ; Zammit C; Riddle A; Meshul CK; Back SA; Valentino M; Fern R
    Ann Neurol; 2012 Dec; 72(6):936-51. PubMed ID: 23280842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in P2Y and P2X purinoceptors in reactive glia following axonal degeneration in the rat optic nerve.
    James G; Butt AM
    Neurosci Lett; 2001 Oct; 312(1):33-6. PubMed ID: 11578839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental composition and water content of rat optic nerve myelinated axons and glial cells: effects of in vitro anoxia and reoxygenation.
    LoPachin RM; Stys PK
    J Neurosci; 1995 Oct; 15(10):6735-46. PubMed ID: 7472432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger.
    Stys PK; Waxman SG; Ransom BR
    J Neurosci; 1992 Feb; 12(2):430-9. PubMed ID: 1311030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroprotection of axons with phenytoin in experimental allergic encephalomyelitis.
    Lo AC; Black JA; Waxman SG
    Neuroreport; 2002 Oct; 13(15):1909-12. PubMed ID: 12395089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathological implications of iNOS expression in central white matter: an ex vivo study of optic nerves from rats with experimental allergic encephalomyelitis.
    Garthwaite G; Batchelor AM; Goodwin DA; Hewson AK; Leeming K; Ahmed Z; Cuzner ML; Garthwaite J
    Eur J Neurosci; 2005 Apr; 21(8):2127-35. PubMed ID: 15869509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trophic factors attenuate nitric oxide mediated neuronal and axonal injury in vitro: roles and interactions of mitogen-activated protein kinase signalling pathways.
    Wilkins A; Compston A
    J Neurochem; 2005 Mar; 92(6):1487-96. PubMed ID: 15748166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium.
    Waxman SG; Black JA; Ransom BR; Stys PK
    Brain Res; 1993 Jun; 614(1-2):137-45. PubMed ID: 8348309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential conduction block of myelinated axons by nitric oxide.
    Shrager P; Youngman M
    J Neurosci Res; 2017 Jul; 95(7):1402-1414. PubMed ID: 27614087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel purinergic sensitivity develops in injured sensory axons following sciatic nerve transection in rat.
    Chen Y; Zhang YH; Zhao ZQ
    Brain Res; 2001 Aug; 911(2):168-72. PubMed ID: 11511386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide blocks fast, slow, and persistent Na+ channels in C-type DRG neurons by S-nitrosylation.
    Renganathan M; Cummins TR; Waxman SG
    J Neurophysiol; 2002 Feb; 87(2):761-75. PubMed ID: 11826045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion transport and membrane potential in CNS myelinated axons. II. Effects of metabolic inhibition.
    Leppanen L; Stys PK
    J Neurophysiol; 1997 Oct; 78(4):2095-107. PubMed ID: 9325377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.