These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11784762)

  • 41. A re-examination of the rubro-olivary tract in the cat, using horseradish peroxidase as a retrograde and an anterograde neuronal tracer.
    Walberg F; Nordby T
    Neuroscience; 1981; 6(11):2379-91. PubMed ID: 7329553
    [No Abstract]   [Full Text] [Related]  

  • 42. A light microscopic investigation of the afferent connections of the lateral reticular nucleus in the cat.
    Hrycyshyn AW; Flumerfelt BA
    J Comp Neurol; 1981 Apr; 197(3):477-502. PubMed ID: 6163801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organization of the cerebellum in the pigeon (Columba livia): III. Corticovestibular connections with eye and neck premotor areas.
    Arends JJ; Allan RW; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):273-89. PubMed ID: 1711055
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids.
    Onodera S
    J Comp Neurol; 1984 Jul; 227(1):37-49. PubMed ID: 6470209
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Light labeling of red nucleus neurons following an injection of peroxidase-conjugated wheat germ agglutinin into the inferior olivary nucleus of the rat.
    Kennedy PR
    Neurosci Lett; 1987 Mar; 74(3):262-8. PubMed ID: 3561880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Connections to cerebellar cortex (Larsell's HVI) in the rabbit: a WGA-HRP study with implications for classical eyeblink conditioning.
    Rosenfield ME; Moore JW
    Behav Neurosci; 1995 Dec; 109(6):1106-18. PubMed ID: 8748961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study.
    Stanton GB
    J Comp Neurol; 1980 Apr; 190(4):699-731. PubMed ID: 6772694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathways for control of face and neck musculature by the basal ganglia and cerebellum.
    Pong M; Horn KM; Gibson AR
    Brain Res Rev; 2008 Aug; 58(2):249-64. PubMed ID: 18199482
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution of neurons in the main cuneate nucleus projecting to the inferior olive in the cat. Evidence that they differ from those directly projecting to the cerebellum.
    Alonso A; Blanco MJ; Paino CL; Rubia FJ
    Neuroscience; 1986 Jul; 18(3):671-83. PubMed ID: 3528915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat.
    Spann BM; Grofova I
    J Comp Neurol; 1989 May; 283(1):13-27. PubMed ID: 2471715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei.
    Berkley KJ; Hand PJ
    J Comp Neurol; 1978 Jul; 180(2):253-64. PubMed ID: 659661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spinal input to the parabrachial nucleus in the cat.
    Blomqvist A; Ma W; Berkley KJ
    Brain Res; 1989 Feb; 480(1-2):29-36. PubMed ID: 2469514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Somatotopic termination of the spino-olivary fibers in the cat, studied with the wheat germ agglutinin-horseradish peroxidase technique.
    Matsushita M; Yaginuma H; Tanami T
    Exp Brain Res; 1992; 89(2):397-407. PubMed ID: 1378027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The olivocerebellar projection in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. IV. The projection to the anterior lobe.
    Brodal A; Walberg F
    J Comp Neurol; 1977 Mar; 172(1):85-108. PubMed ID: 65365
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The organization of olivo-cerebellar projections in the opossum, Didelphis virginiana, as revealed by the retrograde transport of horseradish peroxidase.
    Linauts M; Martin GF
    J Comp Neurol; 1978 May; 179(2):355-81. PubMed ID: 641222
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thalamic projections to the hippocampal and entorhinal areas in the cat.
    Yanagihara M; Niimi K; Ono K
    J Comp Neurol; 1987 Dec; 266(1):122-41. PubMed ID: 2448349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey.
    Noda H; Sugita S; Ikeda Y
    J Comp Neurol; 1990 Dec; 302(2):330-48. PubMed ID: 1705268
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spinal neurons reaching the lateral reticular nucleus as studied in the rat by retrograde transport of horseradish peroxidase.
    Menétrey D; Roudier F; Besson JM
    J Comp Neurol; 1983 Nov; 220(4):439-52. PubMed ID: 6643737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Topographic organization of the cerebello-olivary projection in the albino rat: an autoradiographic orthograde tracing study.
    Umetani T
    Kobe J Med Sci; 1989 Apr; 35(2):65-91. PubMed ID: 2796262
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei.
    Neuhuber WL; Zenker W
    J Comp Neurol; 1989 Feb; 280(2):231-53. PubMed ID: 2466876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.