These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 11784775)

  • 21. Contextual knowledge configures attentional control networks.
    DiQuattro NE; Geng JJ
    J Neurosci; 2011 Dec; 31(49):18026-35. PubMed ID: 22159116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trial history effects in the ventral attentional network.
    Scalf PE; Ahn J; Beck DM; Lleras A
    J Cogn Neurosci; 2014 Dec; 26(12):2789-97. PubMed ID: 24960047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Face perception is mediated by a distributed cortical network.
    Ishai A; Schmidt CF; Boesiger P
    Brain Res Bull; 2005 Sep; 67(1-2):87-93. PubMed ID: 16140166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapping frontal-limbic correlates of orienting to change detection.
    Williams LM; Felmingham K; Kemp AH; Rennie C; Brown KJ; Bryant RA; Gordon E
    Neuroreport; 2007 Feb; 18(3):197-202. PubMed ID: 17314656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neural basis of executive function in working memory: an fMRI study based on individual differences.
    Osaka N; Osaka M; Kondo H; Morishita M; Fukuyama H; Shibasaki H
    Neuroimage; 2004 Feb; 21(2):623-31. PubMed ID: 14980565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsic insula network engagement underlying children's reading and arithmetic skills.
    Chang TT; Lee PH; Metcalfe AWS
    Neuroimage; 2018 Feb; 167():162-177. PubMed ID: 29162521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing tactile pattern and vibrotactile frequency discrimination: a human FMRI study.
    Li Hegner Y; Lee Y; Grodd W; Braun C
    J Neurophysiol; 2010 Jun; 103(6):3115-22. PubMed ID: 20457848
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the anterior insular cortex in integrative causal signaling during multisensory auditory-visual attention.
    Chen T; Michels L; Supekar K; Kochalka J; Ryali S; Menon V
    Eur J Neurosci; 2015 Jan; 41(2):264-74. PubMed ID: 25352218
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Predominantly Visual Subdivision of The Right Temporo-Parietal Junction (vTPJ).
    Horiguchi H; Wandell BA; Winawer J
    Cereb Cortex; 2016 Feb; 26(2):639-646. PubMed ID: 25267856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional Fractionation of the Cingulo-opercular Network: Alerting Insula and Updating Cingulate.
    Han SW; Eaton HP; Marois R
    Cereb Cortex; 2019 Jun; 29(6):2624-2638. PubMed ID: 29850839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L; Yao D; Yin G
    Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention.
    Salmi J; Rinne T; Koistinen S; Salonen O; Alho K
    Brain Res; 2009 Aug; 1286():155-64. PubMed ID: 19577551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The neural bases of momentary lapses in attention.
    Weissman DH; Roberts KC; Visscher KM; Woldorff MG
    Nat Neurosci; 2006 Jul; 9(7):971-8. PubMed ID: 16767087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency.
    Huang MX; Lee RR; Miller GA; Thoma RJ; Hanlon FM; Paulson KM; Martin K; Harrington DL; Weisend MP; Edgar JC; Canive JM
    Neuroimage; 2005 Oct; 28(1):99-114. PubMed ID: 15979344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The neural correlates of attention orienting in visuospatial working memory for detecting feature and conjunction changes.
    Yeh YY; Kuo BC; Liu HL
    Brain Res; 2007 Jan; 1130(1):146-57. PubMed ID: 17173876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical sites of sustained and divided attention in normal elderly humans.
    Johannsen P; Jakobsen J; Bruhn P; Hansen SB; Gee A; Stodkilde-Jorgensen H; Gjedde A
    Neuroimage; 1997 Oct; 6(3):145-55. PubMed ID: 9344819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional MRI of working memory and selective attention in vibrotactile frequency discrimination.
    Sörös P; Marmurek J; Tam F; Baker N; Staines WR; Graham SJ
    BMC Neurosci; 2007 Jul; 8():48. PubMed ID: 17610721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.