These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 11785267)
1. [Assessment of biological corrosion of ferroconcrete of ground-based industrial structures]. Rozhanskaia AM; Piliashenko-Novokhatnyĭ AI; Purish LM; Durcheva VN; Kozlova IA Mikrobiol Z; 2001; 63(3):71-7. PubMed ID: 11785267 [TBL] [Abstract][Full Text] [Related]
2. [Microflora of damaged ferroconcrete structures under the conditions of inhibitory protection]. Kopteva ZhP; Zanina VV; Purish LM; Piliashenko-Novokhatnyĭ AI; Kozlova IA Mikrobiol Z; 2004; 66(5):68-75. PubMed ID: 15554300 [TBL] [Abstract][Full Text] [Related]
3. [Dynamics of successive changes in sulphidogenic microbial association under the conditions of formation of the biofilm on steel surface]. Purish LM; Asaulenko LH Mikrobiol Z; 2007; 69(6):19-25. PubMed ID: 18380176 [TBL] [Abstract][Full Text] [Related]
4. Impact of sulphate-reducing bacteria on the performance of engineering materials. Javaherdashti R Appl Microbiol Biotechnol; 2011 Sep; 91(6):1507-17. PubMed ID: 21786108 [TBL] [Abstract][Full Text] [Related]
5. [Microorganisms in heat supply lines and internal corrosion of steel pipes]. Rozanova EP; Dubinina GA; Lebedeva EV; Suntsova LA; Lipovskikh VM; Tsvetkov NN Mikrobiologiia; 2003; 72(2):212-20. PubMed ID: 12751246 [TBL] [Abstract][Full Text] [Related]
6. Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor. Rao TS; Kora AJ; Chandramohan P; Panigrahi BS; Narasimhan SV Biofouling; 2009 Oct; 25(7):581-91. PubMed ID: 20183117 [TBL] [Abstract][Full Text] [Related]
7. [Evaluation of molybdate and nitrate on sulphate-reducing bacteria related to corrosion processes in industrial systems]. Torrado Rincón JR; Calixto Gómez DM; Sarmiento Caraballo AE; Panqueva Alvarez JH Rev Argent Microbiol; 2008; 40(1):52-62. PubMed ID: 18669055 [TBL] [Abstract][Full Text] [Related]
8. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
9. [Anti-corrosive effect of pesticides in soil corrosion conditions]. Smykun NV; Tretiak AP; Kurmakova IN Mikrobiol Z; 2001; 63(4):85-90. PubMed ID: 11692682 [TBL] [Abstract][Full Text] [Related]
11. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Duncan KE; Gieg LM; Parisi VA; Tanner RS; Tringe SG; Bristow J; Suflita JM Environ Sci Technol; 2009 Oct; 43(20):7977-84. PubMed ID: 19921923 [TBL] [Abstract][Full Text] [Related]
12. [Stages of biofilm formation by sulfate-reducing bacteria]. Asaulenko LH; Purishch LM; Kozlova IP Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221 [TBL] [Abstract][Full Text] [Related]
13. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water. Zuo R; Ornek D; Syrett BC; Green RM; Hsu CH; Mansfeld FB; Wood TK Appl Microbiol Biotechnol; 2004 Apr; 64(2):275-83. PubMed ID: 12898064 [TBL] [Abstract][Full Text] [Related]
14. Impact of microbial activity on the radioactive waste disposal: long term prediction of biocorrosion processes. Libert M; Schütz MK; Esnault L; Féron D; Bildstein O Bioelectrochemistry; 2014 Jun; 97():162-8. PubMed ID: 24177136 [TBL] [Abstract][Full Text] [Related]
15. Iron corrosion by novel anaerobic microorganisms. Dinh HT; Kuever J; Mussmann M; Hassel AW; Stratmann M; Widdel F Nature; 2004 Feb; 427(6977):829-32. PubMed ID: 14985759 [TBL] [Abstract][Full Text] [Related]
16. [Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery]. Nazina TN; Grigor'ian AA; Shestakova NM; Babich TL; Ivoĭlov VS; Feng Q; Ni F; Wang J; She Y; Xiang T; Luo Z; Beliaev SS; Ivanov MV Mikrobiologiia; 2007; 76(3):329-39. PubMed ID: 17633408 [TBL] [Abstract][Full Text] [Related]
17. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion. Dong ZH; Liu T; Liu HF Biofouling; 2011 May; 27(5):487-95. PubMed ID: 21604218 [TBL] [Abstract][Full Text] [Related]
18. Surface neutralization and H(2)S oxidation at early stages of sewer corrosion: influence of temperature, relative humidity and H(2)S concentration. Joseph AP; Keller J; Bustamante H; Bond PL Water Res; 2012 Sep; 46(13):4235-45. PubMed ID: 22677502 [TBL] [Abstract][Full Text] [Related]
19. Microbial iron respiration: impacts on corrosion processes. Lee AK; Newman DK Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):134-9. PubMed ID: 12734693 [TBL] [Abstract][Full Text] [Related]
20. Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems. Jensen HS; Nielsen AH; Hvitved-Jacobsen T; Vollertsen J Water Sci Technol; 2008; 57(11):1721-6. PubMed ID: 18547922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]