These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11785646)

  • 1. 85Kr measurement system for continuous monitoring at the Meteorological Research Institute, Japan.
    Igarashi Y; Aoyama M; Nemoto K; Hirose K; Miyao T; Fushimi K; Suzuki M; Yasui S; Asai Y; Aoki I; Fujii K; Yamamoto S; Sartorius H; Weiss W
    J Environ Monit; 2001 Dec; 3(6):688-96. PubMed ID: 11785646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal variations of atmospheric 85Kr observed during 1995-2001 in Japan: estimation of atmospheric 85Kr inventory in the Northern Hemisphere.
    Hirota M; Nemoto K; Wada A; Igarashi Y; Aoyama M; Matsueda H; Hirose K; Sartorius H; Schlosser C; Schmid S; Weiss W; Fujii K
    J Radiat Res; 2004 Sep; 45(3):405-13. PubMed ID: 15613786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of krypton-85 in air at Clonskeagh, Dublin 1993-1997.
    Howett D; O'Colmáin M
    J Radiol Prot; 1998 Mar; 18(1):15-21. PubMed ID: 9594112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved method for 85Kr analysis by liquid scintillation counting and its application to atmospheric 85Kr determination.
    Momoshima N; Inoue F; Sugihara S; Shimada J; Taniguchi M
    J Environ Radioact; 2010 Aug; 101(8):615-21. PubMed ID: 20430490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.
    Abe K; Iyogi T; Kawabata H; Chiang JH; Suwa H; Hisamatsu S
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):331-5. PubMed ID: 25948824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The measurement of low concentrations of Kr-85 in atmospheric air samples.
    Wilhelmová L; Tomásek M; Stukheil K
    Biol Trace Elem Res; 1994; 43-45():725-30. PubMed ID: 7710893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-laboratory comparison of atmospheric 85Kr concentration measurements.
    Csongor E; Wilhelmová L; Dvorák Z; Povinec P; Grgula M
    Int J Rad Appl Instrum A; 1988; 39(5):401-5. PubMed ID: 2840417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Update and improvement of the global krypton-85 emission inventory.
    Ahlswede J; Hebel S; Ross JO; Schoetter R; Kalinowski MB
    J Environ Radioact; 2013 Jan; 115():34-42. PubMed ID: 22858641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity measurement of 85Kr diluted by a large volume balloon technique.
    Yunoki A; Yamada T; Kawada Y; Unno Y; Sato Y; Hino Y
    Appl Radiat Isot; 2010; 68(7-8):1340-3. PubMed ID: 20056431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conclusions on plutonium separation from atmospheric krypton-85 measured at various distances from the Karlsruhe reprocessing plant.
    Kalinowski MB; Sartorius H; Uhl S; Weiss W
    J Environ Radioact; 2004; 73(2):203-22. PubMed ID: 15023448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified method of 85Kr measurement for dating young groundwaters.
    Held J; Schuhbeck S; Rauert W
    Int J Rad Appl Instrum A; 1992 Jul; 43(7):939-42. PubMed ID: 1321105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ metrology of 85Kr plumes released by the COGEMA La Hague nuclear reprocessing plant.
    Gurriaran R; Maro D; Bouisset P; Hebert D; Leclerc G; Mekhlouche D; Rozet M; Solier L
    J Environ Radioact; 2004; 72(1-2):137-44. PubMed ID: 15162865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A performance estimate for the detection of undeclared nuclear-fuel reprocessing by atmospheric 85Kr.
    Kemp RS; Schlosser C
    J Environ Radioact; 2008 Aug; 99(8):1341-8. PubMed ID: 18504064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating 5 decades of atmospheric
    Kersting A; Schlosser C; Bollhöfer A; Suckow A
    J Environ Radioact; 2020 Dec; 225():106451. PubMed ID: 33120030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Krypton gas cylinders as a source of radiation.
    Fischer HW; Bielefeld T; Hettwig B
    Health Phys; 2010 Jul; 99(1):58-65. PubMed ID: 20539125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-field krypton-85 measurements in stable meteorological conditions around the AREVA NC La Hague reprocessing plant: estimation of atmospheric transfer coefficients.
    Connan O; Solier L; Hébert D; Maro D; Lamotte M; Voiseux C; Laguionie P; Cazimajou O; Le Cavelier S; Godinot C; Morillon M; Thomas L; Percot S
    J Environ Radioact; 2014 Nov; 137():142-149. PubMed ID: 25078471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of atmospheric krypton-85 activity concentrations observed close to the ITCZ in the southern hemisphere.
    Bollhöfer A; Schlosser C; Ross JO; Sartorius H; Schmid S
    J Environ Radioact; 2014 Jan; 127():111-8. PubMed ID: 24184817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating mesoscale transport and diffusion of radioactive noble gases using the Lagrangian particle dispersion model.
    Kim CH; Song CK; Lee SH; Song SK
    J Environ Radioact; 2008 Oct; 99(10):1644-52. PubMed ID: 18590941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring atmospheric
    Gao C; Liu SY; Feng JD; Hu SM; Jiang W; Lu ZT; Ritterbusch F; Wang WH; Yang GM; Zhao LU
    J Environ Radioact; 2021 Jul; 233():106604. PubMed ID: 33813356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of radiation monitor effectiveness for the detection of 85Kr.
    Jester WA; Baratta AJ; Granlund RW; Eidam GR
    Health Phys; 1982 Jun; 42(6):827-32. PubMed ID: 7107289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.