These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11785755)

  • 1. Thermodynamic insights into proteins from NMR spin relaxation studies.
    Spyracopoulos L; Sykes BD
    Curr Opin Struct Biol; 2001 Oct; 11(5):555-9. PubMed ID: 11785755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. May the driving force be with you--whatever it is.
    Cavanagh J; Akke M
    Nat Struct Biol; 2000 Jan; 7(1):11-3. PubMed ID: 10625416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the backbone and side chain dynamics of the CaM-CaMKIp complex reveals microscopic contributions to protein conformational entropy.
    Frederick KK; Kranz JK; Wand AJ
    Biochemistry; 2006 Aug; 45(32):9841-8. PubMed ID: 16893184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex.
    Lee AL; Kinnear SA; Wand AJ
    Nat Struct Biol; 2000 Jan; 7(1):72-7. PubMed ID: 10625431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics and entropy of a calmodulin-peptide complex studied by NMR and molecular dynamics.
    Prabhu NV; Lee AL; Wand AJ; Sharp KA
    Biochemistry; 2003 Jan; 42(2):562-70. PubMed ID: 12525185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of a calmodulin-like calcium-binding domain from Arabidopsis thaliana.
    Song J; Zhao Q; Thao S; Frederick RO; Markley JL
    J Biomol NMR; 2004 Dec; 30(4):451-6. PubMed ID: 15630565
    [No Abstract]   [Full Text] [Related]  

  • 7. Structure, dynamics and interaction with kinase targets: computer simulations of calmodulin.
    Yang C; Jas GS; Kuczera K
    Biochim Biophys Acta; 2004 Mar; 1697(1-2):289-300. PubMed ID: 15023369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paramagnetism-based restraints for Xplor-NIH.
    Banci L; Bertini I; Cavallaro G; Giachetti A; Luchinat C; Parigi G
    J Biomol NMR; 2004 Mar; 28(3):249-61. PubMed ID: 14752258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding.
    Stone MJ
    Acc Chem Res; 2001 May; 34(5):379-88. PubMed ID: 11352716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of the internal dynamics of a calmodulin-peptide complex.
    Lee AL; Sharp KA; Kranz JK; Song XJ; Wand AJ
    Biochemistry; 2002 Nov; 41(46):13814-25. PubMed ID: 12427045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three-dimensional structure of Ca(2+)-bound calcyclin: implications for Ca(2+)-signal transduction by S100 proteins.
    Sastry M; Ketchem RR; Crescenzi O; Weber C; Lubienski MJ; Hidaka H; Chazin WJ
    Structure; 1998 Feb; 6(2):223-31. PubMed ID: 9519412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation.
    Akke M; Skelton NJ; Kördel J; Palmer AG; Chazin WJ
    Biochemistry; 1993 Sep; 32(37):9832-44. PubMed ID: 8373781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of biomolecular NMR spin relaxation parameters.
    Reddy T; Rainey JK
    Biochem Cell Biol; 2010 Apr; 88(2):131-42. PubMed ID: 20453916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-modulated S100 protein-phospholipid interactions. An NMR study of calbindin D9k and DPC.
    Malmendal A; Vander Kooi CW; Nielsen NC; Chazin WJ
    Biochemistry; 2005 May; 44(17):6502-12. PubMed ID: 15850384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 15N NMR mobility study on the dicalcium P43M calbindin D9k and its mono-La3+-substituted form.
    Bertini I; Carrano CJ; Luchinat C; Piccioli M; Poggi L
    Biochemistry; 2002 Apr; 41(16):5104-11. PubMed ID: 11955058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased rigidity of eglin c at acidic pH: evidence from NMR spin relaxation and MD simulations.
    Hu H; Clarkson MW; Hermans J; Lee AL
    Biochemistry; 2003 Dec; 42(47):13856-68. PubMed ID: 14636053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation.
    Lee LK; Rance M; Chazin WJ; Palmer AG
    J Biomol NMR; 1997 Apr; 9(3):287-98. PubMed ID: 9204557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic interpretation of protein dynamics from NMR relaxation measurements.
    Spyracopoulos L
    Protein Pept Lett; 2005 Apr; 12(3):235-40. PubMed ID: 15777271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic origins of entropy, heat capacity and the glass transition in proteins.
    Lee AL; Wand AJ
    Nature; 2001 May; 411(6836):501-4. PubMed ID: 11373686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains.
    Fefeu S; Biekofsky RR; McCormick JE; Martin SR; Bayley PM; Feeney J
    Biochemistry; 2000 Dec; 39(51):15920-31. PubMed ID: 11123919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.