These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 11785830)
1. Auditory display of knee-joint vibration signals. Krishnan S; Rangayyan RM; Bell GD; Frank CB J Acoust Soc Am; 2001 Dec; 110(6):3292-304. PubMed ID: 11785830 [TBL] [Abstract][Full Text] [Related]
2. Adaptive filtering, modelling and classification of knee joint vibroarthrographic signals for non-invasive diagnosis of articular cartilage pathology. Krishnan S; Rangayyan RM; Bell GD; Frank CB; Ladly KO Med Biol Eng Comput; 1997 Nov; 35(6):677-84. PubMed ID: 9538545 [TBL] [Abstract][Full Text] [Related]
3. Modeling and classification of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows. Rangayyan RM; Wu Y Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2099-102. PubMed ID: 19163110 [TBL] [Abstract][Full Text] [Related]
4. Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology. Krishnan S; Rangayyan RM; Bell GD; Frank CB IEEE Trans Biomed Eng; 2000 Jun; 47(6):773-83. PubMed ID: 10833852 [TBL] [Abstract][Full Text] [Related]
5. Localization of knee joint cartilage pathology by multichannel vibroarthrography. Shen Y; Rangayyan RM; Bell GD; Frank CB; Zhang YT; Ladly KO Med Eng Phys; 1995 Dec; 17(8):583-94. PubMed ID: 8564153 [TBL] [Abstract][Full Text] [Related]
6. Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Rangayyan RM; Wu Y Ann Biomed Eng; 2009 Jan; 37(1):156-63. PubMed ID: 19015987 [TBL] [Abstract][Full Text] [Related]
7. Adaptive cancellation of muscle contraction interference in vibroarthrographic signals. Zhang YT; Rangayyan RM; Frank CB; Bell GD IEEE Trans Biomed Eng; 1994 Feb; 41(2):181-91. PubMed ID: 8026851 [TBL] [Abstract][Full Text] [Related]
8. Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals. Umapathy K; Krishnan S IEEE Trans Biomed Eng; 2006 Mar; 53(3):517-23. PubMed ID: 16532778 [TBL] [Abstract][Full Text] [Related]
9. Parametric representation and screening of knee joint vibroarthrographic signals. Rangayyan RM; Krishnan S; Bell GD; Frank CB; Ladly KO IEEE Trans Biomed Eng; 1997 Nov; 44(11):1068-74. PubMed ID: 9353986 [TBL] [Abstract][Full Text] [Related]
10. Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions. Rangayyan RM; Wu YF Med Biol Eng Comput; 2008 Mar; 46(3):223-32. PubMed ID: 17960443 [TBL] [Abstract][Full Text] [Related]
11. Analysis and multiclass classification of pathological knee joints using vibroarthrographic signals. Kręcisz K; Bączkowicz D Comput Methods Programs Biomed; 2018 Feb; 154():37-44. PubMed ID: 29249345 [TBL] [Abstract][Full Text] [Related]
12. An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Kim KS; Seo JH; Kang JU; Song CG Comput Methods Programs Biomed; 2009 May; 94(2):198-206. PubMed ID: 19217685 [TBL] [Abstract][Full Text] [Related]
13. Computer-aided diagnosis of knee-joint disorders via vibroarthrographic signal analysis: a review. Wu Y; Krishnan S; Rangayyan RM Crit Rev Biomed Eng; 2010; 38(2):201-24. PubMed ID: 20932239 [TBL] [Abstract][Full Text] [Related]
14. Strict 2-Surface Proximal Classification of Knee-joint Vibroarthrographic Signals. Mu T; Nandi AK; Rangayyan RM Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4911-4. PubMed ID: 18003107 [TBL] [Abstract][Full Text] [Related]
15. Screening of vibroarthrographic signals via adaptive segmentation and linear prediation modeling. Moussavi ZM; Rangayyan RM; Bell GD; Frank CB; Ladly KO; Zhang YT IEEE Trans Biomed Eng; 1996 Jan; 43(1):15-23. PubMed ID: 8567002 [TBL] [Abstract][Full Text] [Related]
16. Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method. Yang S; Cai S; Zheng F; Wu Y; Liu K; Wu M; Zou Q; Chen J Med Eng Phys; 2014 Oct; 36(10):1305-11. PubMed ID: 25096412 [TBL] [Abstract][Full Text] [Related]
17. Monitoring deterioration of knee osteoarthritis using vibration arthrography in daily activities. Ye Y; Wan Z; Liu B; Xu H; Wang Q; Ding T Comput Methods Programs Biomed; 2022 Jan; 213():106519. PubMed ID: 34826659 [TBL] [Abstract][Full Text] [Related]
18. Automatic de-noising of knee-joint vibration signals using adaptive time-frequency representations. Krishnan S; Rangayyan RM Med Biol Eng Comput; 2000 Jan; 38(1):2-8. PubMed ID: 10829383 [TBL] [Abstract][Full Text] [Related]
19. Physiological patellofemoral crepitus in knee joint disorders. Jiang CC; Liu YJ; Yip KM; Wu E Bull Hosp Jt Dis; 1993-1995; 53(4):22-6. PubMed ID: 8829591 [TBL] [Abstract][Full Text] [Related]
20. Screening of knee-joint vibroarthrographic signals using the strict 2-surface proximal classifier and genetic algorithm. Mu T; Nandi AK; Rangayyan RM Comput Biol Med; 2008 Oct; 38(10):1103-11. PubMed ID: 18823882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]