BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11787803)

  • 1. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison.
    Hubbuch JJ; Matthiesen DB; Hobley TJ; Thomas OR
    Bioseparation; 2001; 10(1-3):99-112. PubMed ID: 11787803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient inclusion body processing using chemical extraction and high gradient magnetic fishing.
    Heebøll-Nielsen A; Choe WS; Middelberg AP; Thomas OR
    Biotechnol Prog; 2003; 19(3):887-98. PubMed ID: 12790654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ magnetic separation for extracellular protein production.
    Käppler T; Cerff M; Ottow K; Hobley T; Posten C
    Biotechnol Bioeng; 2009 Feb; 102(2):535-45. PubMed ID: 18726963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of expanded bed adsorption to purify flavonoids from Ginkgo biloba L.
    Li J; Chase HA
    J Chromatogr A; 2009 Dec; 1216(50):8759-70. PubMed ID: 19321174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-gradient magnetic affinity separation of trypsin from porcine pancreatin.
    Hubbuch JJ; Thomas OR
    Biotechnol Bioeng; 2002 Aug; 79(3):301-13. PubMed ID: 12115419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibody capture from corn endosperm extracts by packed bed and expanded bed adsorption.
    Menkhaus TJ; Glatz CE
    Biotechnol Prog; 2005; 21(2):473-85. PubMed ID: 15801788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of the influence of yeast cell debris on protein and alpha-glucosidase adsorption at various zones within the expanded bed using in-bed sampling.
    Balasundaram B; Harrison ST; Li J; Chase HA
    Biotechnol Bioeng; 2008 Feb; 99(3):614-24. PubMed ID: 17680682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of cell adsorbent interactions on protein adsorption in expanded beds.
    Fernández-Lahore HM; Geilenkirchen S; Boldt K; Nagel A; Kula MR; Thömmes J
    J Chromatogr A; 2000 Mar; 873(2):195-208. PubMed ID: 10757297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compatibility of column inlet and adsorbent designs for processing of corn endosperm extract by expanded bed adsorption.
    Menkhaus TJ; Glatz CE
    Biotechnol Bioeng; 2004 Aug; 87(3):324-36. PubMed ID: 15281107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimising biomass/adsorbent interactions in expanded bed adsorption processes: a methodological design approach.
    Lin DQ; Fernández-Lahore HM; Kula MR; Thömmes J
    Bioseparation; 2001; 10(1-3):7-19. PubMed ID: 11787800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of new high-density ion exchange adsorbents for expanded bed adsorption chromatography.
    Xia HF; Lin DQ; Yao SJ
    J Chromatogr A; 2007 Mar; 1145(1-2):58-66. PubMed ID: 17316664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of adsorbent porosity on performance of expanded bed chromatography of proteins.
    Gondkar S; Manudhane K; Amritkar N; Pai A; Lali A
    Biotechnol Prog; 2001; 17(3):522-9. PubMed ID: 11386874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofiber adsorbents for high productivity continuous downstream processing.
    Hardick O; Dods S; Stevens B; Bracewell DG
    J Biotechnol; 2015 Nov; 213():74-82. PubMed ID: 25784156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-effective nanoporous Agar-Agar polymer/Nickel powder composite particle for effective bio-products adsorption by expanded bed chromatography.
    Asgari S; Jahanshahi M; Rahimpour A
    J Chromatogr A; 2014 Sep; 1361():191-202. PubMed ID: 25152492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanded bed adsorption processing of mammalian cell culture fluid: comparison with packed bed affinity chromatography.
    González Y; Ibarra N; Gómez H; González M; Dorta L; Padilla S; Valdés R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Jan; 784(1):183-7. PubMed ID: 12504196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell/adsorbent interactions in expanded bed adsorption of proteins.
    Feuser J; Walter J; Kula MR; Thömmes J
    Bioseparation; 1999; 8(1-5):99-109. PubMed ID: 10734561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental characterization of next-generation expanded-bed adsorbents for capture of a recombinant protein expressed in high-cell-density yeast fermentation.
    Kelly W; Garcia P; McDermott S; Mullen P; Kamguia G; Jones G; Ubiera A; Göklen K
    Biotechnol Appl Biochem; 2013; 60(5):510-20. PubMed ID: 23745765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of expanded bed supports for the recovery of plasmid DNA by anion exchange adsorption.
    Theodossiou I; Søndergaard M; Thomas OR
    Bioseparation; 2001; 10(1-3):31-44. PubMed ID: 11787795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity purification of proteins using expanded beds.
    Chase HA; Draeger NM
    J Chromatogr; 1992 Apr; 597(1-2):129-45. PubMed ID: 1387651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and evaluation of low-cost agarose-zinc nanoporous composite matrix: influence of adsorbent density and size distribution on the performance of expanded beds.
    Asghari F; Jahanshahi M
    J Chromatogr A; 2012 Sep; 1257():89-97. PubMed ID: 22920304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.