BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 11788333)

  • 1. Reactive species mechanisms of cellular hypoxia-reoxygenation injury.
    Li C; Jackson RM
    Am J Physiol Cell Physiol; 2002 Feb; 282(2):C227-41. PubMed ID: 11788333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes.
    Kang SM; Lim S; Song H; Chang W; Lee S; Bae SM; Chung JH; Lee H; Kim HG; Yoon DH; Kim TW; Jang Y; Sung JM; Chung NS; Hwang KC
    Eur J Pharmacol; 2006 Mar; 535(1-3):212-9. PubMed ID: 16516885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation.
    Abramov AY; Scorziello A; Duchen MR
    J Neurosci; 2007 Jan; 27(5):1129-38. PubMed ID: 17267568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of hypoxia and reoxygenation on the formation and release of reactive oxygen species by porcine pulmonary artery endothelial cells.
    Yang W; Block ER
    J Cell Physiol; 1995 Aug; 164(2):414-23. PubMed ID: 7622587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complement activation following reoxygenation of hypoxic human endothelial cells: role of intracellular reactive oxygen species, NF-kappaB and new protein synthesis.
    Collard CD; Agah A; Stahl GL
    Immunopharmacology; 1998 Mar; 39(1):39-50. PubMed ID: 9667422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium and free radicals in hypoxia/reoxygenation injury of renal epithelial cells.
    Greene EL; Paller MS
    Am J Physiol; 1994 Jan; 266(1 Pt 2):F13-20. PubMed ID: 8304479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-hypoxic cellular disintegration in glycine-preserved renal tubules is attenuated by hydroxyl radical scavengers and iron chelators.
    Moussavian MR; Slotta JE; Kollmar O; Menger MD; Gronow G; Schilling MK
    Langenbecks Arch Surg; 2008 May; 393(3):303-10. PubMed ID: 18283485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new low molecular weight, MnII-containing scavenger of superoxide anion protects cardiac muscle cells from hypoxia/reoxygenation injury.
    Nistri S; Boccalini G; Bencini A; Becatti M; Valtancoli B; Conti L; Lucarini L; Bani D
    Free Radic Res; 2015 Jan; 49(1):67-77. PubMed ID: 25348343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells.
    Hu Q; Ziegelstein RC
    Circulation; 2000 Nov; 102(20):2541-7. PubMed ID: 11076830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia/reoxygenation decreases endothelial glycocalyx via reactive oxygen species and calcium signaling in a cellular model for shock.
    Jackson-Weaver O; Friedman JK; Rodriguez LA; Hoof MA; Drury RH; Packer JT; Smith A; Guidry C; Duchesne JC
    J Trauma Acute Care Surg; 2019 Nov; 87(5):1070-1076. PubMed ID: 31658237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell death caused by pyrogallol or hypoxia/reoxygenation.
    Yamada J; Yoshimura S; Yamakawa H; Sawada M; Nakagawa M; Hara S; Kaku Y; Iwama T; Naganawa T; Banno Y; Nakashima S; Sakai N
    Neurosci Res; 2003 Jan; 45(1):1-8. PubMed ID: 12507718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reoxygenation speed and its implication for cellular injury responses in hypoxic RAW 264.7 cells.
    Lee JH; Kim K; Jo YH; Hwang JE; Chung HJ; Yang C
    J Surg Res; 2018 Jul; 227():88-94. PubMed ID: 29804868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reperfusion injury and reactive oxygen species: The evolution of a concept.
    Granger DN; Kvietys PR
    Redox Biol; 2015 Dec; 6():524-551. PubMed ID: 26484802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of xanthine oxidase in the production of intracellular oxygen radicals in an in-vitro hypoxia-reoxygenation model.
    Kakita T; Suzuki M; Takeuchi H; Unno M; Matsuno S
    J Hepatobiliary Pancreat Surg; 2002; 9(2):249-55. PubMed ID: 12140615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xanthine oxidase produces O2-. in posthypoxic injury of renal epithelial cells.
    Greene EL; Paller MS
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F251-5. PubMed ID: 1324607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine.
    Sohn HY; Krotz F; Gloe T; Keller M; Theisen K; Klauss V; Pohl U
    Cardiovasc Res; 2003 Jun; 58(3):638-46. PubMed ID: 12798437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment.
    Millar TM; Phan V; Tibbles LA
    Free Radic Biol Med; 2007 Apr; 42(8):1165-77. PubMed ID: 17382198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reoxygenation after hypoxia and glucose depletion causes reactive oxygen species production by mitochondria in HUVEC.
    Therade-Matharan S; Laemmel E; Duranteau J; Vicaut E
    Am J Physiol Regul Integr Comp Physiol; 2004 Nov; 287(5):R1037-43. PubMed ID: 15205181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway.
    Zhang YQ; Hu SY; Chen YD; Guo MZ; Wang S
    Int J Mol Med; 2016 Oct; 38(4):1055-62. PubMed ID: 27573711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection from reoxygenation injury by inhibition of rac1.
    Kim KS; Takeda K; Sethi R; Pracyk JB; Tanaka K; Zhou YF; Yu ZX; Ferrans VJ; Bruder JT; Kovesdi I; Irani K; Goldschmidt-Clermont P; Finkel T
    J Clin Invest; 1998 May; 101(9):1821-6. PubMed ID: 9576744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.