These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 11788405)

  • 1. Basal endothelial glycocalyx's response to shear stress: a review of structure, function, and clinical implications.
    Vittum Z; Cocchiaro S; Mensah SA
    Front Cell Dev Biol; 2024; 12():1371769. PubMed ID: 38562144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design considerations of benchtop fluid flow bioreactors for bio-engineered tissue equivalents
    Hoyle HW; Stenger CML; Przyborski SA
    Biomater Biosyst; 2022 Dec; 8():100063. PubMed ID: 36824373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct visualization of interstitial flow distribution in aortic walls.
    Fukui W; Ujihara Y; Nakamura M; Sugita S
    Sci Rep; 2022 Mar; 12(1):5381. PubMed ID: 35354879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering.
    Karakaya C; van Asten JGM; Ristori T; Sahlgren CM; Loerakker S
    Biomech Model Mechanobiol; 2022 Feb; 21(1):5-54. PubMed ID: 34613528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo measurement of stent length by using intravascular ultrasound.
    Algowhary M; Taha S; Hasan-Ali H; Matsumura A
    Egypt Heart J; 2019 Dec; 71(1):32. PubMed ID: 31858288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic Influence on Smooth Muscle Cell Kinetics and Phenotype During Early Vein Graft Adaptation.
    Klein B; Destephens A; Dumeny L; Hu Q; He Y; O'Malley K; Jiang Z; Tran-Son-Tay R; Berceli S
    Ann Biomed Eng; 2017 Mar; 45(3):644-655. PubMed ID: 27624660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding.
    Qiu J; Zheng Y; Hu J; Liao D; Gregersen H; Deng X; Fan Y; Wang G
    J R Soc Interface; 2014 Jan; 11(90):20130852. PubMed ID: 24152813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of flow pulsatility on arterial drug distribution in stent-based therapy.
    O'Brien CC; Kolachalama VB; Barber TJ; Simmons A; Edelman ER
    J Control Release; 2013 Jun; 168(2):115-24. PubMed ID: 23541929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of shear-sensitive genes in the normal rat aorta identifies Hand2 as a major flow-responsive transcription factor.
    Björck HM; Renner J; Maleki S; Nilsson SF; Kihlberg J; Folkersen L; Karlsson M; Ebbers T; Eriksson P; Länne T
    PLoS One; 2012; 7(12):e52227. PubMed ID: 23284944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts.
    Shi ZD; Tarbell JM
    Ann Biomed Eng; 2011 Jun; 39(6):1608-19. PubMed ID: 21479754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear stress modulation of smooth muscle cell marker genes in 2-D and 3-D depends on mechanotransduction by heparan sulfate proteoglycans and ERK1/2.
    Shi ZD; Abraham G; Tarbell JM
    PLoS One; 2010 Aug; 5(8):e12196. PubMed ID: 20808940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interstitial flow induces MMP-1 expression and vascular SMC migration in collagen I gels via an ERK1/2-dependent and c-Jun-mediated mechanism.
    Shi ZD; Ji XY; Berardi DE; Qazi H; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2010 Jan; 298(1):H127-35. PubMed ID: 19880665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1.
    Shi ZD; Ji XY; Qazi H; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2009 Oct; 297(4):H1225-34. PubMed ID: 19465549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening.
    LaDisa JF; Olson LE; Hettrick DA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2005 Oct; 4():59. PubMed ID: 16250918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H576-84. PubMed ID: 11788405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1589-97. PubMed ID: 10775138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of shear stress over smooth muscle cells in deformable arterial wall.
    Dabagh M; Jalali P; Konttinen YT; Sarkomaa P
    Med Biol Eng Comput; 2008 Jul; 46(7):649-57. PubMed ID: 18386089
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.