BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11788419)

  • 1. Effects of NADH and NADPH on superoxide levels and cerebral vascular tone.
    Didion SP; Faraci FM
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H688-95. PubMed ID: 11788419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo.
    Paravicini TM; Chrissobolis S; Drummond GR; Sobey CG
    Stroke; 2004 Feb; 35(2):584-9. PubMed ID: 14739416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts.
    Janiszewski M; Souza HP; Liu X; Pedro MA; Zweier JL; Laurindo FR
    Free Radic Biol Med; 2002 Mar; 32(5):446-53. PubMed ID: 11864784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD.
    Didion SP; Hathaway CA; Faraci FM
    Am J Physiol Heart Circ Physiol; 2001 Oct; 281(4):H1697-703. PubMed ID: 11557560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C.
    Heitzer T; Wenzel U; Hink U; Krollner D; Skatchkov M; Stahl RA; MacHarzina R; Bräsen JH; Meinertz T; Münzel T
    Kidney Int; 1999 Jan; 55(1):252-60. PubMed ID: 9893134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling.
    Mollnau H; Wendt M; Szöcs K; Lassègue B; Schulz E; Oelze M; Li H; Bodenschatz M; August M; Kleschyov AL; Tsilimingas N; Walter U; Förstermann U; Meinertz T; Griendling K; Münzel T
    Circ Res; 2002 Mar; 90(4):E58-65. PubMed ID: 11884382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-induced cerebral vasodilatation in vivo involves activation of phosphatidylinositol-3 kinase, NADPH-oxidase, and nitric oxide synthase.
    Paravicini TM; Miller AA; Drummond GR; Sobey CG
    J Cereb Blood Flow Metab; 2006 Jun; 26(6):836-45. PubMed ID: 16222243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II produces superoxide-mediated impairment of endothelial function in cerebral arterioles.
    Didion SP; Faraci FM
    Stroke; 2003 Aug; 34(8):2038-42. PubMed ID: 12829858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase-derived superoxide anion.
    Erdei N; Tóth A; Pásztor ET; Papp Z; Edes I; Koller A; Bagi Z
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2107-15. PubMed ID: 16798827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme.
    O'Donnell VB; Azzi A
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):805-12. PubMed ID: 8836123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation by homocysteine of the iberiotoxin-sensitive, Ca2+ -activated K+ channels of porcine coronary artery smooth muscle cells.
    Au AL; Seto SW; Chan SW; Chan MS; Kwan YW
    Eur J Pharmacol; 2006 Sep; 546(1-3):109-19. PubMed ID: 16908017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular NADH oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes.
    Kim YK; Lee MS; Son SM; Kim IJ; Lee WS; Rhim BY; Hong KW; Kim CD
    Diabetes; 2002 Feb; 51(2):522-7. PubMed ID: 11812764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species in the cerebral circulation: are they all bad?
    Miller AA; Drummond GR; Sobey CG
    Antioxid Redox Signal; 2006; 8(7-8):1113-20. PubMed ID: 16910759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADMA impairs nitric oxide-mediated arteriolar function due to increased superoxide production by angiotensin II-NAD(P)H oxidase pathway.
    Veresh Z; Racz A; Lotz G; Koller A
    Hypertension; 2008 Nov; 52(5):960-6. PubMed ID: 18838625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased NADPH oxidase activity, gp91phox expression, and endothelium-dependent vasorelaxation during neointima formation in rabbits.
    Paravicini TM; Gulluyan LM; Dusting GJ; Drummond GR
    Circ Res; 2002 Jul; 91(1):54-61. PubMed ID: 12114322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries.
    Miller AA; Drummond GR; Schmidt HH; Sobey CG
    Circ Res; 2005 Nov; 97(10):1055-62. PubMed ID: 16210546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen.
    Miller AA; Drummond GR; Mast AE; Schmidt HH; Sobey CG
    Stroke; 2007 Jul; 38(7):2142-9. PubMed ID: 17525399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endotoxemia.
    Brandes RP; Koddenberg G; Gwinner W; Kim Dy; Kruse HJ; Busse R; Mügge A
    Hypertension; 1999 May; 33(5):1243-9. PubMed ID: 10334819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide does not mediate the acute vasoconstrictor effects of angiotensin II: a study in human and porcine arteries.
    Schuijt MP; Tom B; de Vries R; Saxena PR; Sluiter W; van Kats JP; Danser AH
    J Hypertens; 2003 Dec; 21(12):2335-44. PubMed ID: 14654755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An NADPH oxidase superoxide-generating system in the rabbit aorta.
    Pagano PJ; Ito Y; Tornheim K; Gallop PM; Tauber AI; Cohen RA
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2274-80. PubMed ID: 7611477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.