These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 11788611)
1. Mutations that change the position of the putative gamma-phosphate linker in the nucleotide binding domains of CFTR alter channel gating. Berger AL; Ikuma M; Hunt JF; Thomas PJ; Welsh MJ J Biol Chem; 2002 Jan; 277(3):2125-31. PubMed ID: 11788611 [TBL] [Abstract][Full Text] [Related]
2. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
3. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
4. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
5. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Tsai MF; Li M; Hwang TC J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370 [TBL] [Abstract][Full Text] [Related]
6. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. Carson MR; Travis SM; Welsh MJ J Biol Chem; 1995 Jan; 270(4):1711-7. PubMed ID: 7530246 [TBL] [Abstract][Full Text] [Related]
7. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. Bompadre SG; Sohma Y; Li M; Hwang TC J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351 [TBL] [Abstract][Full Text] [Related]
8. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. Aleksandrov L; Mengos A; Chang X; Aleksandrov A; Riordan JR J Biol Chem; 2001 Apr; 276(16):12918-23. PubMed ID: 11279083 [TBL] [Abstract][Full Text] [Related]
9. On the mechanism of MgATP-dependent gating of CFTR Cl- channels. Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Jan; 121(1):17-36. PubMed ID: 12508051 [TBL] [Abstract][Full Text] [Related]
10. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing. Kloch M; Milewski M; Nurowska E; Dworakowska B; Cutting GR; Dołowy K Cell Physiol Biochem; 2010; 25(2-3):169-80. PubMed ID: 20110677 [TBL] [Abstract][Full Text] [Related]
11. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia. Dong Q; Ernst SE; Ostedgaard LS; Shah VS; Ver Heul AR; Welsh MJ; Randak CO J Biol Chem; 2015 May; 290(22):14140-53. PubMed ID: 25887396 [TBL] [Abstract][Full Text] [Related]
12. The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover. Aleksandrov L; Aleksandrov AA; Chang XB; Riordan JR J Biol Chem; 2002 May; 277(18):15419-25. PubMed ID: 11861646 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. Csanády L; Nairn AC; Gadsby DC J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148 [TBL] [Abstract][Full Text] [Related]
14. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation. Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716 [TBL] [Abstract][Full Text] [Related]
15. Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2. Szollosi A; Vergani P; Csanády L J Gen Physiol; 2010 Oct; 136(4):407-23. PubMed ID: 20876359 [TBL] [Abstract][Full Text] [Related]
16. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Vergani P; Lockless SW; Nairn AC; Gadsby DC Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345 [TBL] [Abstract][Full Text] [Related]
17. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. Jih KY; Li M; Hwang TC; Bompadre SG J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785 [TBL] [Abstract][Full Text] [Related]
18. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. Wang W; Bernard K; Li G; Kirk KL J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710 [TBL] [Abstract][Full Text] [Related]
19. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR. Csanády L; Mihályi C; Szollosi A; Töröcsik B; Vergani P J Gen Physiol; 2013 Jul; 142(1):61-73. PubMed ID: 23752332 [TBL] [Abstract][Full Text] [Related]
20. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain. Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]