BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11788724)

  • 1. Pyrophosphorolysis-activatable oligonucleotides may facilitate detection of rare alleles, mutation scanning and analysis of chromatin structures.
    Liu Q; Sommer SS
    Nucleic Acids Res; 2002 Jan; 30(2):598-604. PubMed ID: 11788724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAP: detection of ultra rare mutations depends on P* oligonucleotides: "sleeping beauties" awakened by the kiss of pyrophosphorolysis.
    Liu Q; Sommer SS
    Hum Mutat; 2004 May; 23(5):426-36. PubMed ID: 15108273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrophosphorolysis by Type II DNA polymerases: implications for pyrophosphorolysis-activated polymerization.
    Liu Q; Sommer SS
    Anal Biochem; 2004 Jan; 324(1):22-8. PubMed ID: 14654041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification.
    Liu Q; Sommer SS
    Biotechniques; 2000 Nov; 29(5):1072-6, 1078, 1080 passim. PubMed ID: 11084870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of ultrarare somatic mutation in the human TP53 gene by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification.
    Shi J; Liu Q; Sommer SS
    Hum Mutat; 2007 Feb; 28(2):131-6. PubMed ID: 17041903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of extremely rare alleles by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification (Bi-PAP-A): measurement of mutation load in mammalian tissues.
    Liu Q; Sommer SS
    Biotechniques; 2004 Jan; 36(1):156-66. PubMed ID: 14740499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of 15 polymerases and phosphorothioate primer modification for detection of UV-induced C:G to T:A mutations by allele-specific PCR.
    Gale JM; Tafoya GB
    Photochem Photobiol; 2004 May; 79(5):461-9. PubMed ID: 15191056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms.
    Bottema CD; Sommer SS
    Mutat Res; 1993 Jul; 288(1):93-102. PubMed ID: 7686270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation detection by TaqMan-allele specific amplification: application to molecular diagnosis of glycogen storage disease type Ia and medium-chain acyl-CoA dehydrogenase deficiency.
    Fujii K; Matsubara Y; Akanuma J; Takahashi K; Kure S; Suzuki Y; Imaizumi M; Iinuma K; Sakatsume O; Rinaldo P; Narisawa K
    Hum Mutat; 2000; 15(2):189-96. PubMed ID: 10649496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time quantitative allele discrimination assay using 3' locked nucleic acid primers for detection of low-percentage mosaic mutations.
    Maertens O; Legius E; Speleman F; Messiaen L; Vandesompele J
    Anal Biochem; 2006 Dec; 359(1):144-6. PubMed ID: 16962063
    [No Abstract]   [Full Text] [Related]  

  • 11. PAP-LMPCR for improved, allele-specific footprinting and automated chromatin fine structure analysis.
    Ingram R; Gao C; Lebon J; Liu Q; Mayoral RJ; Sommer SS; Hoogenkamp M; Riggs AD; Bonifer C
    Nucleic Acids Res; 2008 Feb; 36(3):e19. PubMed ID: 18208840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes.
    Sommer SS; Groszbach AR; Bottema CD
    Biotechniques; 1992 Jan; 12(1):82-7. PubMed ID: 1734929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allele-specific competitive blocker-PCR detection of rare base substitution.
    Parsons BL; McKinzie PB; Heflich RH
    Methods Mol Biol; 2005; 291():235-45. PubMed ID: 15502227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermo Sequenase DNA polymerase and T. acidophilum pyrophosphatase: new thermostable enzymes for DNA sequencing.
    Vander Horn PB; Davis MC; Cunniff JJ; Ruan C; McArdle BF; Samols SB; Szasz J; Hu G; Hujer KM; Domke ST; Brummet SR; Moffett RB; Fuller CW
    Biotechniques; 1997 Apr; 22(4):758-62, 764-5. PubMed ID: 9105629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions.
    Zhao G; Guan Y
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):722-8. PubMed ID: 20829187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fidelity DNA polymerase enhances the sensitivity of a peptide nucleic acid clamp PCR assay for K-ras mutations.
    Gilje B; Heikkilä R; Oltedal S; Tjensvoll K; Nordgård O
    J Mol Diagn; 2008 Jul; 10(4):325-31. PubMed ID: 18556764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of known mutation by proof-reading PCR.
    Bi W; Stambrook PJ
    Nucleic Acids Res; 1998 Jun; 26(12):3073-5. PubMed ID: 9611257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays.
    Di Giusto DA; King GC
    Nucleic Acids Res; 2004 Feb; 32(3):e32. PubMed ID: 14973328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols.
    Angers M; Cloutier JF; Castonguay A; Drouin R
    Nucleic Acids Res; 2001 Aug; 29(16):E83. PubMed ID: 11504891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotyping with TaqMAMA.
    Li B; Kadura I; Fu DJ; Watson DE
    Genomics; 2004 Feb; 83(2):311-20. PubMed ID: 14706460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.